Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists Make Magnetic Silicon, Advancing Spin Based Computing

10.01.2005


CNSE spintronics lab research shows silicon can maintain a permanent magnetic field above room temperature, which could help to develop more effective magnetic semiconductors and future spintronic devices


Ferromagnetic hysteresis loops taken at three temperatures measured from the Mn implated Si.



Silicon is best known as the material used to make semiconductor computer chips with integrated circuits. Today, scientists at the College of Nanoscale Science and Engineering (CNSE) at the University at Albany published research that could lay the foundation for using silicon to develop chips with magnetic properties, potentially impacting the development of electron-spin-based or "spintronic" devices.

Spintronics exploits the quantum mechanical property of electron spin, as well as its charge state. Potential spintronics applications include magnetic random access memory (MRAM), which could enable the development of computing devices that are always on, don’t require time to "boot up" and don’t require a traditional hard drive.


While semiconductor materials such as silicon are utilized for memory and central processing units, the permanent information in computers is stored in magnetized hard drives which utilize the spin of the electron.. Recent research has discovered that a semiconductor can be made magnetic by doping it with an impurity such as Mn. The resulting material or diluted magnetic semiconductor (DMS) combines the properties of magnetism used in permanent information storage with that of semiconductor memory and logic devices. DMS spintronic devices have the potential to operate at considerably higher speeds and consume less power than conventional devices.

The research conducted by CNSE Professor Vincent LaBella and Martin Bolduc, CNSE post-doctorate fellow, shows for the first time that silicon can be made "ferromagnetic" or permanently magnetic up to 127 C, well above where conventional devices operate. The researchers achieved this by implanting Mn into silicon up to a concentration of 1% per atom.

LaBella and Bolduc are both specialists in spintronics research. LaBella was the first spintronics specialist to attempt to "magnetize" silicon, using tools at the Albany NanoTech complex, home to CNSE. "The results are very exciting and open the door to silicon based spintronic devices that operate at or above room temperature," said LaBella. "The samples were fabricated using standard semiconductor processing equipment available at Albany NanoTech to quickly get results, which were significantly positive."

LaBella then joined forces with Bolduc for a more extensive experiment. The two implanted manganese into silicon in varying concentrations, then measured the magnetic properties with a SQUID magnetometer. They found the silicon was ferromagnetic above room temperature, or up to 127 degrees Celsius, opening up the possibility of its use in devices like personal computers, phones and PDAs. "These results indicate that the ferromagnetic exchange coupling in Si is very strong. Our future research is focused on understanding why this is so," said Bolduc.

The research paper, entitled Above Room Temperature Ferromagnetism in Mn-ion implanted Si, was published in Physical Review B. Bolduc was lead author on the paper. For further information or to obtain a copy of the paper, contact Shonna Keogan at skeogan@uamail.albany.edu or vlabella@uamail.albany.edu.

About Albany NanoTech

One of the largest centers for nanotechnology research in the country, Albany NanoTech is home to the College of Nanoscale Science and Engineering (CNSE) and the New York State Center of Excellence in Nanoelectronics (NYSCEN) of the University at Albany-State University of New York. Its 450,000 square foot complex houses the only 200mm/300mm wafer facilities in the academic world, encompasses nanoelectronics, system-on-a-chip technologies, biochips, optoelectronics and photonics devices, closed-loop sensors and ultra-high-speed communication components.

With over 65,000 square fee of Class 1 capable 300 mm wafer cleanrooms, as well as on-site faculty and student researchers, Albany NanoTech provides corporate partners with a unique environment to pioneer, develop, and test new nanoscience and nanoengineering innovations.

Contact:

Shonna Keogan
College of Nanoscale Science and Engineering
University at Albany - SUNY
518-956-7201
skeogan@uamail.albany.edu

Shonna Keogan | EurekAlert!
Further information:
http://www.albany.edu

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>