Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Scientists Make Magnetic Silicon, Advancing Spin Based Computing


CNSE spintronics lab research shows silicon can maintain a permanent magnetic field above room temperature, which could help to develop more effective magnetic semiconductors and future spintronic devices

Ferromagnetic hysteresis loops taken at three temperatures measured from the Mn implated Si.

Silicon is best known as the material used to make semiconductor computer chips with integrated circuits. Today, scientists at the College of Nanoscale Science and Engineering (CNSE) at the University at Albany published research that could lay the foundation for using silicon to develop chips with magnetic properties, potentially impacting the development of electron-spin-based or "spintronic" devices.

Spintronics exploits the quantum mechanical property of electron spin, as well as its charge state. Potential spintronics applications include magnetic random access memory (MRAM), which could enable the development of computing devices that are always on, don’t require time to "boot up" and don’t require a traditional hard drive.

While semiconductor materials such as silicon are utilized for memory and central processing units, the permanent information in computers is stored in magnetized hard drives which utilize the spin of the electron.. Recent research has discovered that a semiconductor can be made magnetic by doping it with an impurity such as Mn. The resulting material or diluted magnetic semiconductor (DMS) combines the properties of magnetism used in permanent information storage with that of semiconductor memory and logic devices. DMS spintronic devices have the potential to operate at considerably higher speeds and consume less power than conventional devices.

The research conducted by CNSE Professor Vincent LaBella and Martin Bolduc, CNSE post-doctorate fellow, shows for the first time that silicon can be made "ferromagnetic" or permanently magnetic up to 127 C, well above where conventional devices operate. The researchers achieved this by implanting Mn into silicon up to a concentration of 1% per atom.

LaBella and Bolduc are both specialists in spintronics research. LaBella was the first spintronics specialist to attempt to "magnetize" silicon, using tools at the Albany NanoTech complex, home to CNSE. "The results are very exciting and open the door to silicon based spintronic devices that operate at or above room temperature," said LaBella. "The samples were fabricated using standard semiconductor processing equipment available at Albany NanoTech to quickly get results, which were significantly positive."

LaBella then joined forces with Bolduc for a more extensive experiment. The two implanted manganese into silicon in varying concentrations, then measured the magnetic properties with a SQUID magnetometer. They found the silicon was ferromagnetic above room temperature, or up to 127 degrees Celsius, opening up the possibility of its use in devices like personal computers, phones and PDAs. "These results indicate that the ferromagnetic exchange coupling in Si is very strong. Our future research is focused on understanding why this is so," said Bolduc.

The research paper, entitled Above Room Temperature Ferromagnetism in Mn-ion implanted Si, was published in Physical Review B. Bolduc was lead author on the paper. For further information or to obtain a copy of the paper, contact Shonna Keogan at or

About Albany NanoTech

One of the largest centers for nanotechnology research in the country, Albany NanoTech is home to the College of Nanoscale Science and Engineering (CNSE) and the New York State Center of Excellence in Nanoelectronics (NYSCEN) of the University at Albany-State University of New York. Its 450,000 square foot complex houses the only 200mm/300mm wafer facilities in the academic world, encompasses nanoelectronics, system-on-a-chip technologies, biochips, optoelectronics and photonics devices, closed-loop sensors and ultra-high-speed communication components.

With over 65,000 square fee of Class 1 capable 300 mm wafer cleanrooms, as well as on-site faculty and student researchers, Albany NanoTech provides corporate partners with a unique environment to pioneer, develop, and test new nanoscience and nanoengineering innovations.


Shonna Keogan
College of Nanoscale Science and Engineering
University at Albany - SUNY

Shonna Keogan | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>