Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Tech Developing Efficient Organic Solar Cell


Researchers use pentacene to develop next-generation solar power

As the price of energy continues to rise, businesses are looking to renewable energy for cheaper sources of power. Making electricity from the most plentiful of these sources - the sun -can be expensive due to the high price of producing traditional silicon-based solar cells. Enter organic solar cells. Made from cheaper materials, their flexibility and feather-weight construction promise to open up new markets for solar energy, potentially powering everything from Radio-Frequency Identification (RFID) tags to iPods and laptop computers.

Researchers at the Georgia Institute of Technology have developed a new approach to creating lightweight organic solar cells. By using pentacene, researchers have been able to convert sunlight to electricity with high efficiency. The research appears in the November 29, 2004 issue of the journal Applied Physics Letters.

“We’ve demonstrated that using a crystalline organic film, pentacene, is a promising new approach to developing organic solar cells,” said Bernard Kippelen, professor in the Center for Organic Photonics and Electronics and the School of Electrical and Computer Engineering at Georgia Tech. “In our paper, we show that we’ve been able to convert solar energy into electricity with 2.7 percent efficiency. Since then, we’ve been able to demonstrate power conversion efficiencies of 3.4 percent and believe that we should reach 5 percent in the near future.”

What makes pentacene such a good material for organic solar cells, Kippelen explained, is that, unlike many of the other materials being studied for use in these cells, it’s a crystal. The crystal structure of atoms joined together in a regular pattern makes it easier for electricity to move through it than some other organic materials, which are more amorphous.

The research group, made up of Kippelen and research scientists Seunghyup Yoo and Benoit Domercq, used pentacene and C60, a form of carbon more popularly known as “buckyballs,” in the cells. Previous attempts by other groups using pentacene in solar cells combined the material with metals, rather than an organic molecule like C60.

“The metal-pentacene cells had very low efficiencies,” said Kippelen. “We decided we would pair out pentacene with an organic molecule because such a combination could generate larger currents.”

Once fully developed, organic solar cells could revolutionize the power industry. Their flexibility and minimal weight will allow them to be placed on almost anything from tents that would provide power to those inside, to clothing that would power personal electronic devices.

The solar cells are still at least five years away from residential applications, said Kippelen. But he estimates that they’ll be ready to use in smaller devices, such as RFID tags, used by some retailers to control inventory, within two years. Kippelen and other professors at the Center for Organic Photonics and Electronics started LumoFlex, a spin-off company based at Georgia Tech, to capitalize on the commercial applications of the research.

Tech founded the Center for Organic Photonics and Electronics in 2003, when Kippelen along with chemistry professors Seth Marder, Joe Perry and Jean-Luc Bredas came to Tech from the University of Arizona. The center teams up with the silicon-based research of the University Center for Excellence in Photovoltaics (UCEP) in Tech’s commitment to producing ground-breaking research and training in both organic and silicon solar cells.

“The silicon and organic photovoltaic groups are working together at Georgia Tech to accelerate the development of cost-effective solar cells to solve the energy and environmental problems simultaneously and reduce our dependence on foreign oil,” said Ajeet Rohatgi, director of UCEP and regent’s professor in the School of Electrical and Computer Engineering.

This year Tech began the Strategic Energy Initiative to carry out scientific and economic research and development on renewable energies like solar and wind power.

The research was funded by the National Science Foundation, the Office of Naval Research and the National Renewable Energy Laboratory.

David Terraso | EurekAlert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>