Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers invent energy-saving computer chip

09.12.2004


New microchip is 10 times smaller and 100 times more energy efficient than currently used chips



University of Alberta researchers have designed a computer chip that uses about 100 times less energy than current state-of-the-art digital chips. The greatly reduced energy consumption of this novel technology offers promise for many small devices with relatively low power needs. This technology could one day eliminate the need to recharge cellphones, help introduce smaller, ultra-high-speed communications systems, and advance the use of implantable health care devices, such as drug delivery chips. Research and development is ongoing before this technology can be implemented in products.

The team at the iCORE High-Capacity Digital Communications Laboratory, including Dr. Vincent Gaudet, Dr. Christian Schlegel, and former graduate students Dave Nguyen and Chris Winstead, created the microchip while working in the University of Alberta Department of Electrical and Computer Engineering. The communications chip was designed by Nguyen, manufactured by CMC (the Canadian Microelectronics Corporation) and tested at the University of Alberta.


This new analog processing technology has been used by Winstead to build the largest analog decoder chip fabricated to date, also built at iCORE’s High-Capacity Digital Communications Laboratory at the University of Alberta. The iCORE HCDC Laboratory is a recognized world leader in this novel and promising technology. "It is well known that there is a power barrier for future increases in process speeds and device sizes, and to overcome this, the world needs a new, disruptive technology," said Dr. Schlegel. "A fundamental new idea gave our team the edge, and we have been fortunate to have maintained a strong group here working on this technology for the last few years."

The invention employs a new method of processing digital data, known as analog decoding, which uses extremely low levels of power to execute its detection algorithm. The team’s research shows no other reported chip uses a lower amount of energy consumed per decoded information bit. The team has published two conference papers based on this project this year: one for the International Symposium on Turbo Codes in Brest, France, and another for the International Symposium on Circuits and Systems (ISCAS) in Vancouver.

The team’s research is supported by iCORE, Science and Engineering Research Canada (more commonly known as NSERC), CMC (Canadian Microelectronics Corporation), the Canada Foundation for Innovation (CFI), and the Alberta Science and Research Authority (ASRA).

Sandra Halme | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>