Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers invent energy-saving computer chip

09.12.2004


New microchip is 10 times smaller and 100 times more energy efficient than currently used chips



University of Alberta researchers have designed a computer chip that uses about 100 times less energy than current state-of-the-art digital chips. The greatly reduced energy consumption of this novel technology offers promise for many small devices with relatively low power needs. This technology could one day eliminate the need to recharge cellphones, help introduce smaller, ultra-high-speed communications systems, and advance the use of implantable health care devices, such as drug delivery chips. Research and development is ongoing before this technology can be implemented in products.

The team at the iCORE High-Capacity Digital Communications Laboratory, including Dr. Vincent Gaudet, Dr. Christian Schlegel, and former graduate students Dave Nguyen and Chris Winstead, created the microchip while working in the University of Alberta Department of Electrical and Computer Engineering. The communications chip was designed by Nguyen, manufactured by CMC (the Canadian Microelectronics Corporation) and tested at the University of Alberta.


This new analog processing technology has been used by Winstead to build the largest analog decoder chip fabricated to date, also built at iCORE’s High-Capacity Digital Communications Laboratory at the University of Alberta. The iCORE HCDC Laboratory is a recognized world leader in this novel and promising technology. "It is well known that there is a power barrier for future increases in process speeds and device sizes, and to overcome this, the world needs a new, disruptive technology," said Dr. Schlegel. "A fundamental new idea gave our team the edge, and we have been fortunate to have maintained a strong group here working on this technology for the last few years."

The invention employs a new method of processing digital data, known as analog decoding, which uses extremely low levels of power to execute its detection algorithm. The team’s research shows no other reported chip uses a lower amount of energy consumed per decoded information bit. The team has published two conference papers based on this project this year: one for the International Symposium on Turbo Codes in Brest, France, and another for the International Symposium on Circuits and Systems (ISCAS) in Vancouver.

The team’s research is supported by iCORE, Science and Engineering Research Canada (more commonly known as NSERC), CMC (Canadian Microelectronics Corporation), the Canada Foundation for Innovation (CFI), and the Alberta Science and Research Authority (ASRA).

Sandra Halme | EurekAlert!
Further information:
http://www.ualberta.ca

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

Oxygen can wake up dormant bacteria for antibiotic attacks

08.12.2016 | Health and Medicine

Newly discovered bacteria-binding protein in the intestine

08.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>