Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British engineer works to secure cost effective tidal power

23.11.2004


A British engineer believes he can secure cost effective tidal power by innovatively placing existing turbine designs inside large bore underwater pipes. Don Cutler’s view is that it’s best to use everything that’s standard. "You don’t re-invent the wheel you improve it."

"Sea water is a most aggressive environment, but using modern materials like carbon fibres, and Teflon, are about the only clever things about my design," he says. Cutler’s design is specifically aimed at taking advantage of straight tides. "With a tide running at 5-6 knots you can get all the power you need," he says. Cutler plans to use oilrig technology to secure his pipe based turbine structures to the seabed. "In order to maximise the tidal power I have five long tubes leading to the turbines, with fish deflectors," he says.

His idea is to prove his concept with a 50ft (15.24m) long pipe, which would be 5ft (1.524m) in diameter. He believes this would produce 1 kilowatt of power. Scaling this up to a pipe with a bore of 100ft (30.48m) would generate 6 megawatts of power based on peak spring tides. Cutler thinks, on average, though this size pipe would generate between 1 and 1.5 megawatts. "Once the water is in the pipe it has nowhere else to go. You need the pipe to constrain the water," he says.



Cutler, who founded the former multi-million pound Weymouth-based engineering company Tekflo, has a history in marine design. Tekflo developed equipment for water systems and North Sea oilrigs, and Cutler sold the business in the 1980s.

Cutler entered the world of tidal power engineering because Portland Harbor, in Dorset where he lives, was the proposed site for a wind farm. The plan was to locate the wind farm on the harbor and not 10 miles out at sea which Cutler believed would have been a better option, so he decided to design an alternative. He also argues tides are predictable whereas wind isn’t.

Cutler is looking to form an association with an existing company that has some experience of securing the finance for such projects.

Makeda Scott | EurekAlert!
Further information:
http://www.fco.gov.uk

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>