Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Green car sets speed record

15.11.2004


When the non-profit organisation IdéeVerte Compétition decided to create a ’green’ racing car, they turned to space technology to make it safer. Running on liquefied petroleum gas, one of the least polluting fuels, and lubricated with sunflower oil, the car is protected against fire hazards by space materials. ’Green’ does not have to mean slow - last week the car set a new speed record of 315 km/h.

"The car of the future will have to respect the environment. This is the only way to create a sustainable transportation system in our world," says Alain Lebrun, President of the IdéeVerte Compétition. "Today there are many new technologies available which have low impact on the environment. We also have more sustainable energy sources available such as liquid natural gas (LNG), liquefied petroleum gas (LPG), biofuels, hydrogen and fuel-cells.

"What better way to raise public awareness than putting them to the best test of all: developing a racing car?" asks Lebrun. "The racing track is the ultimate laboratory and also a fantastic place to display the ‘green’ car technology to come."



Green idea for racing

In 1993 the IdéeVerte Compétition was founded as a non-profit organisation made up of independent engineers and technicians concerned about the environment and the pollution generated by today’s cars. As motor sport enthusiasts, the objective was to create a non-polluting racing car.

The head of ESA’s Technology Transfer and Promotion Office (TTP) Pierre Brisson explains, "in 2002 we decided to support the project by making available advanced space technologies. We have always been keen to support programmes related to environmental protection, especially in the motor field and, together with the IdéeVerte racing team, we identified several space technologies to help them improve safety, in particular to reduce the fire risk."

Space technologies at work

Altogether four technologies from space programmes are used in the racing car to improve overall safety by reducing the risk of fire and its effects. "The primary fire hazard in an LPG fuelled high-performing racing car such as this is the possibility that heat from the engine and the exhaust will ignite parts of the car. Therefore, the first thing we did was to install very good heat insulation material designed for ESA’s Ariane launchers," explains Nicolas Masson from Bertin Technologies. Bertin Technologies, part of ESA’s TTP network of technology brokers, has participated in bringing together the different industrial partners.

To reduce heat transmission from the 1000° C hot primary exhaust system to the engine area, the exhaust system is insulated with a heat wrapping material. This prevents the engine over heating and reduces the risk of igniting a gas leak. In addition, this helps to retain the heat in the exhaust system thus increasing the horsepower. The thermal wrapping for the exhaust system is a combination of standard solutions used in motor racing enhanced with material developed for the European Ariane launcher.

Notes Nicolas Masson, "it would also be a good idea to use this insulation technology around a standard exhaust system on petrol-driven cars, as the catalytic converter would heat up more quickly and operate better".

To protect the LPG fuel tank, another heat insulation technology was chosen: a special thermal, shield developed for the engines used by the Ariane launchers. In case of engine fire, this shield blocks the heat transmission so well that the fire must burn for at least 45 minutes before the tank is heated to a level where the pressure will open the safety valve. This gives plenty of time for the fire extinguishers, also originating from space developments, to put the fire out.

Nicolas Masson emphasizes that "without the Ariane thermal shield the fire would heat the fuel tank so fast that the pressure would open the safety valves within five minutes and the gas that escaped would feed the fire with potentially catastrophic results. This technique could be applied right away to cars that run on LPG to make them safer".

Space technology has also been used for the LPG fuel tank and the fire extinguishers. The fuel tank is made of a special lightweight titanium developed by aerospace engineers as it withstands shock better than steel. The technology used for the three fire extinguishers on the car comes from the Russian launchers and is similar to the pyrotechnical engines used in the airbags installed in today’s cars. These can be activated either manually by the driver or automatically by a security control unit connected to sensors that measure engine temperature, fire and escaping gasses.

Even to determine the speed the car turns to ESA technology. The IdéeVerte car carries on board a V-Box, an EGNOS-compliant tracking system from the Race Logic Company. This box uses the EGNOS signal to determine the speed, acceleration and position of the car in real-time.

Pierre Brisson | alfa
Further information:
http://www.esa.int

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>