Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mixing Biology And Electronics To Create Robotic Vision

01.11.2004


Robots are a long way from being as sophisticated as the movies would have you believe.

Sure they can crush humans at chess. But they can’t beat us at soccer < half the time they can’t even recognize the soccer ball < or defeat us in single combat and walk away from the encounter. "We don’t have robots that can physically compete with humans in any way," says Charles Higgins, assistant professor of Electrical and Computer Engineering (ECE) at the University of Arizona.

However, Higgins is working to change that. He hopes to make robots more physical by giving them sight and an ability to react to what they see. "Right now, robots in general are just pitiful in terms of visual interaction," Higgins said. True, a few of today’s robots can see in some sense, but they aren’t mobile. These vision systems are connected to large computers, which precludes their use in small, mobile robots.



Outside of these few vision-only systems, today’s robots see very little. "Wouldn’t it be nice to have a robot that could actually see you and interact with you visually?" Higgins asks. "You could wave at it or smile at it. You could make a face gesture. It would be wonderful to interact with robots in the same way that we interact with humans."

If Higgins has his way, at least some of the first steps toward that goal will be achieved in the next ten to 20 years through neuromorphic engineering, a discipline that combines biology and electronics. Higgins and his students are developing an airborne visual navigation system by creating electronic clones of insect vision processing systems in analog integrated circuits. The circuits create insect-like self-motion estimation, obstacle avoidance, target tracking and other visual behaviors on two model blimps.

Higgins is well qualified to combine the radically different disciplines of biology and electronics. In addition to his faculty position in ECE, he’s also on the faculty in UA’s neuroscience program, which is recognized as one of the world’s leaders in studying insect vision. He conducts research in the neuroscience labs to find out how insect vision works and then transfers those results to the ECE lab, where he creates electronic vision circuits based on the insect model.

These circuits don’t use standard microprocessors. Instead, they’re based on what’s called "parallel processing" < a bunch of slower, simpler analog processors working simultaneously on a problem. In traditional digital computers, problems are solved in serial fashion, where a single fast digital processor flashes through a series of steps to solve the problem sequentially.

In fact, today’s digital computers < as good as they are at playing chess, working spreadsheets and solving math problems < can’t tackle the much more complex activities that we, as humans, take almost for granted.

The human eye, for instance, processes information at the equivalent of about 100 frames per second (fps) < much faster than a movie camera, which trundles along at 24 fps or a video camera that runs at 30 fps.

Each frame is processed for luminance, color, and motion, and the resulting images aren’t blurred or smeared. Doing that with a conventional computer is extremely complicated, requiring expensive processors and huge gulps of power, Higgins says. "It requires a lot of data moving at a very high rate of speed and in a very small instant of time."

It’s a little like sending a digital computer out to play baseball. It has to continually rush between all nine positions on the field sequentially, catching the ball at shortstop, for instance, and then rushing to first to catch the throw it made from the shortstop position. Parallel processing < which mimics the way biological systems solve problems < would play baseball by stationing a slower processor at every position. Higgins hopes to see robotic vision develop in the same way that robotic speech processing has during the past 30 years. "Think of all the toys today that have some sort of speech interaction," he said. "In the ’70s and ’80s that would have required a bunch of expensive hardware. But in the ’90s toy manufacturers started using a microchip set that allowed them to do that very cheaply. Now some toy sets have excellent, very clear voices. I’m hoping to do the same thing with vision."

Higgins wants to develop a microchip-based vision system that could follow a moving object like a soccer ball without getting confused by similarly shaped or colored objects, or a chip that would recognize different objects < a sidewalk crack it could roll over, for instance, from a ditch that it couldn’t. "I’m not talking about a vision system that will do everything our vision system will do, or even everything an insect’s visual system will do," he said. "I’m looking at a lot less < a very specific vision subsystem that accomplishes a specific task."

Building vision systems for toys might sound a bit frivolous, particularly coming from high-powered university laboratories, but toys account for a huge amount of money in the U.S. economy. And toys have much in common with satellites, missiles, automotive systems and home electronics. "Toys are big enough that if you make a popular vision processor and you’re able to sell it to Hasbro to put on their toys and it’s a successful product, you could be a millionaire quite easily," Higgins said. "In fact, a millionaire wouldn’t even cover it."

The key to all this is packing a huge amount of highly efficient processing in a small space, which is the goal of Higgins’ research. Once that’s done, the possibilities are nearly endless. "I’d like to give engineers a vision chip set like this and see what they would do with it," Higgins said. "My bet is that they would use it for things we could never imagine now. And I know it would be a really big thing."

The first chip set might cost $30,000 to produce. Then the price might drop quickly to $200 a set and then down to $20 a set, Higgins said. "When you get that vision chip down to $20, people will be buying millions of them for their products," he said. "I’d like to see that."

Ed Stiles | University of Arizona
Further information:
http://uanews.org/engineering
http://www.ece.arizona.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>