Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research on "Holes" May Unearth Causes of Superconductivity

28.10.2004


Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have uncovered another possible clue to the causes of high-temperature superconductivity, a phenomenon in which the electrical resistance of a material disappears below a certain temperature. In a superconducting compound, they found evidence of a rarely seen arrangement of “holes” – locations where electrons are absent. The results appear in the October 28, 2004, issue of Nature.



The researchers were studying a compound made of strontium, copper, and oxygen (which they’ve dubbed SCO) that is one of the “cuprates,” a family of compounds that contain copper oxide. In SCO, the scientists found evidence of a “hole crystal” – a rigid, ordered arrangement of holes. Holes are positively charged and, like electrons, may interact with each other to produce a superconducting current. “A hole crystal is a very unusual phenomenon,” said Brookhaven physicist Peter Abbamonte, the study’s lead researcher. “Its existence is a direct result of the correlations between holes, which are believed to produce superconductivity in other cuprates.”

SCO consists of one layer of strontium atoms sandwiched by two sheets of different copper oxides. In one sheet, the copper-oxide molecules form long, parallel chains. The other copper-oxide layer, which contains the hole crystal, has a ladder structure, resembling chains that are linked horizontally. A hole crystal is just one type of arrangement of electric charge in a material. These arrangements are important because some researchers believe that superconductivity is the result of a particular arrangement, or occurs when a superconductor approaches a boundary between two arrangements. In other cuprates, for example, scientists are studying a charge arrangement in which ribbons of holes and magnetic regions form alternating “stripes.” “We believe the hole crystal and stripes may be linked,” said Abbamonte. “Specifically, the hole crystal in SCO may be a ‘low-dimensional’ precursor to stripes, meaning it exists only along the copper-oxide ladders, rather than in an entire copper-oxide plane.”


He and his collaborators studied SCO using x-rays from the National Synchrotron Light Source, a facility at Brookhaven Lab that produces x-ray, ultraviolet, and infrared light for research in a variety of scientific fields. They placed an SCO sample in the path of an x-ray beam, varied the wavelength of the beam, and watched how the x-rays reflected away from the sample.

At a particular energy, the sample reflected back the x-rays very intensely. The research group discovered that this reflection was caused by the holes, which led them to determine that the holes formed an ordered lattice since randomly placed holes could not have produced such a strong reflection.

Abbamonte and his collaborators plan to continue this research by varying the chemical composition of SCO to see if it changes the hole crystal. They will also examine another cuprate to see if its stripes are related to the crystal. “Clearly, more research needs to be done to study these phases and their possible link to superconductivity,” said Abbamonte.

The research was funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science, the National Science Foundation, Bell Laboratories, the Dutch Science Foundation, and the Netherlands Organization for Fundamental Research on Matter.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>