Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watts from wastewater: New device produces power while treating sewage

27.10.2004


A new technology is being developed that can turn raw sewage into raw power. The device, called a microbial fuel cell, not only treats wastewater, but also provides a clean energy source with the potential for enormous financial savings, according to scientists at Pennsylvania State University.



Although power output is still relatively low, they say the technology is improving rapidly and eventually could be used to run a small wastewater treatment plant, which would be especially attractive in developing countries. It also could be used to treat waste from animal farms, food processing plants and even manned space missions. The report appears in the Nov. 1 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Similar in design to a hydrogen fuel cell, the microbial fuel cell captures electrons that are naturally released by bacteria as they digest organic matter and then it converts the electrons into electrical current. “We generated up to 72 watts per square meter, which is 2.8 times that generated in a larger device reported earlier this year in ES&T,” says Bruce Logan, Ph.D., an environmental engineer at Pennsylvania State University and co-author of the paper. . While still a relatively small amount of power, the researchers have used these types of devices to run a small fan.


The technology is developing rapidly. Since submitting the current paper, Logan and his colleagues have tweaked microbial fuel cell devices to produce up to 350 watts per square meter. “Two years ago we had 0.1 . . . and now we’re in the 100s,” he says. “We’d like to get in the range of 500-1000. We’re looking for another order of magnitude increase.” Logan doesn’t envision using his microbial fuel cell for the same type of applications as hydrogen fuel cells, such as in automobiles or houses. “We see using this any place where there’s a high concentration of organic matter,” he says.

The most obvious application would be in wastewater treatment plants, which essentially could power themselves as they treat water. Such a technology would be particularly useful in developing countries, Logan suggests, because it would produce a net amount of electricity, offering a reason to keep a treatment plant running besides just treating wastewater. “Even if it’s only powering a cell phone tower, that would be a reason enough to keep it going,” he says.

David Bagley, a scientist at the University of Toronto, has calculated that the energy potential in wastewater is almost 10 times the cost to treat it. “If we could achieve just one-twentieth of that power, we could break even,” Logan says. “We’re confident we’re going to be able to do more than that.” “In our system, the two electrodes are separated by a proton exchange membrane (PEM), just like in a conventional hydrogen fuel cell,” says Logan. “It opens the door to using existing hydrogen-gas based stack technologies with bacteria in water.”

At the moment, scientists can’t exactly pull a hydrogen fuel cell off the shelf and use it to treat wastewater, but the design principles are very similar. Wastewater flows on one side of the cell and air flows on the other, continuously generating electricity while also removing organic matter from the water. The device also could be used to treat waste from the food processing industry and farms — especially hog farms, which have tremendous problems with costs and odors, Logan says. NASA scientists are even developing a similar technology to be used in manned space missions, turning the astronauts’ waste into extra power. Logan plans to build a larger version of his microbial fuel cell for demonstrations; he hopes to have the design completed in about six months.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Hybrid storage with market potential: Battery production goes Industrie 4.0
01.03.2017 | Fraunhofer Institute for Applied Polymer Research IPA

nachricht WSU research advances energy savings for oil, gas industries
28.02.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>