Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watts from wastewater: New device produces power while treating sewage

27.10.2004


A new technology is being developed that can turn raw sewage into raw power. The device, called a microbial fuel cell, not only treats wastewater, but also provides a clean energy source with the potential for enormous financial savings, according to scientists at Pennsylvania State University.



Although power output is still relatively low, they say the technology is improving rapidly and eventually could be used to run a small wastewater treatment plant, which would be especially attractive in developing countries. It also could be used to treat waste from animal farms, food processing plants and even manned space missions. The report appears in the Nov. 1 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Similar in design to a hydrogen fuel cell, the microbial fuel cell captures electrons that are naturally released by bacteria as they digest organic matter and then it converts the electrons into electrical current. “We generated up to 72 watts per square meter, which is 2.8 times that generated in a larger device reported earlier this year in ES&T,” says Bruce Logan, Ph.D., an environmental engineer at Pennsylvania State University and co-author of the paper. . While still a relatively small amount of power, the researchers have used these types of devices to run a small fan.


The technology is developing rapidly. Since submitting the current paper, Logan and his colleagues have tweaked microbial fuel cell devices to produce up to 350 watts per square meter. “Two years ago we had 0.1 . . . and now we’re in the 100s,” he says. “We’d like to get in the range of 500-1000. We’re looking for another order of magnitude increase.” Logan doesn’t envision using his microbial fuel cell for the same type of applications as hydrogen fuel cells, such as in automobiles or houses. “We see using this any place where there’s a high concentration of organic matter,” he says.

The most obvious application would be in wastewater treatment plants, which essentially could power themselves as they treat water. Such a technology would be particularly useful in developing countries, Logan suggests, because it would produce a net amount of electricity, offering a reason to keep a treatment plant running besides just treating wastewater. “Even if it’s only powering a cell phone tower, that would be a reason enough to keep it going,” he says.

David Bagley, a scientist at the University of Toronto, has calculated that the energy potential in wastewater is almost 10 times the cost to treat it. “If we could achieve just one-twentieth of that power, we could break even,” Logan says. “We’re confident we’re going to be able to do more than that.” “In our system, the two electrodes are separated by a proton exchange membrane (PEM), just like in a conventional hydrogen fuel cell,” says Logan. “It opens the door to using existing hydrogen-gas based stack technologies with bacteria in water.”

At the moment, scientists can’t exactly pull a hydrogen fuel cell off the shelf and use it to treat wastewater, but the design principles are very similar. Wastewater flows on one side of the cell and air flows on the other, continuously generating electricity while also removing organic matter from the water. The device also could be used to treat waste from the food processing industry and farms — especially hog farms, which have tremendous problems with costs and odors, Logan says. NASA scientists are even developing a similar technology to be used in manned space missions, turning the astronauts’ waste into extra power. Logan plans to build a larger version of his microbial fuel cell for demonstrations; he hopes to have the design completed in about six months.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>