Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watts from wastewater: New device produces power while treating sewage

27.10.2004


A new technology is being developed that can turn raw sewage into raw power. The device, called a microbial fuel cell, not only treats wastewater, but also provides a clean energy source with the potential for enormous financial savings, according to scientists at Pennsylvania State University.



Although power output is still relatively low, they say the technology is improving rapidly and eventually could be used to run a small wastewater treatment plant, which would be especially attractive in developing countries. It also could be used to treat waste from animal farms, food processing plants and even manned space missions. The report appears in the Nov. 1 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Similar in design to a hydrogen fuel cell, the microbial fuel cell captures electrons that are naturally released by bacteria as they digest organic matter and then it converts the electrons into electrical current. “We generated up to 72 watts per square meter, which is 2.8 times that generated in a larger device reported earlier this year in ES&T,” says Bruce Logan, Ph.D., an environmental engineer at Pennsylvania State University and co-author of the paper. . While still a relatively small amount of power, the researchers have used these types of devices to run a small fan.


The technology is developing rapidly. Since submitting the current paper, Logan and his colleagues have tweaked microbial fuel cell devices to produce up to 350 watts per square meter. “Two years ago we had 0.1 . . . and now we’re in the 100s,” he says. “We’d like to get in the range of 500-1000. We’re looking for another order of magnitude increase.” Logan doesn’t envision using his microbial fuel cell for the same type of applications as hydrogen fuel cells, such as in automobiles or houses. “We see using this any place where there’s a high concentration of organic matter,” he says.

The most obvious application would be in wastewater treatment plants, which essentially could power themselves as they treat water. Such a technology would be particularly useful in developing countries, Logan suggests, because it would produce a net amount of electricity, offering a reason to keep a treatment plant running besides just treating wastewater. “Even if it’s only powering a cell phone tower, that would be a reason enough to keep it going,” he says.

David Bagley, a scientist at the University of Toronto, has calculated that the energy potential in wastewater is almost 10 times the cost to treat it. “If we could achieve just one-twentieth of that power, we could break even,” Logan says. “We’re confident we’re going to be able to do more than that.” “In our system, the two electrodes are separated by a proton exchange membrane (PEM), just like in a conventional hydrogen fuel cell,” says Logan. “It opens the door to using existing hydrogen-gas based stack technologies with bacteria in water.”

At the moment, scientists can’t exactly pull a hydrogen fuel cell off the shelf and use it to treat wastewater, but the design principles are very similar. Wastewater flows on one side of the cell and air flows on the other, continuously generating electricity while also removing organic matter from the water. The device also could be used to treat waste from the food processing industry and farms — especially hog farms, which have tremendous problems with costs and odors, Logan says. NASA scientists are even developing a similar technology to be used in manned space missions, turning the astronauts’ waste into extra power. Logan plans to build a larger version of his microbial fuel cell for demonstrations; he hopes to have the design completed in about six months.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>