Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watts from wastewater: New device produces power while treating sewage

27.10.2004


A new technology is being developed that can turn raw sewage into raw power. The device, called a microbial fuel cell, not only treats wastewater, but also provides a clean energy source with the potential for enormous financial savings, according to scientists at Pennsylvania State University.



Although power output is still relatively low, they say the technology is improving rapidly and eventually could be used to run a small wastewater treatment plant, which would be especially attractive in developing countries. It also could be used to treat waste from animal farms, food processing plants and even manned space missions. The report appears in the Nov. 1 edition of Environmental Science & Technology, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society.

Similar in design to a hydrogen fuel cell, the microbial fuel cell captures electrons that are naturally released by bacteria as they digest organic matter and then it converts the electrons into electrical current. “We generated up to 72 watts per square meter, which is 2.8 times that generated in a larger device reported earlier this year in ES&T,” says Bruce Logan, Ph.D., an environmental engineer at Pennsylvania State University and co-author of the paper. . While still a relatively small amount of power, the researchers have used these types of devices to run a small fan.


The technology is developing rapidly. Since submitting the current paper, Logan and his colleagues have tweaked microbial fuel cell devices to produce up to 350 watts per square meter. “Two years ago we had 0.1 . . . and now we’re in the 100s,” he says. “We’d like to get in the range of 500-1000. We’re looking for another order of magnitude increase.” Logan doesn’t envision using his microbial fuel cell for the same type of applications as hydrogen fuel cells, such as in automobiles or houses. “We see using this any place where there’s a high concentration of organic matter,” he says.

The most obvious application would be in wastewater treatment plants, which essentially could power themselves as they treat water. Such a technology would be particularly useful in developing countries, Logan suggests, because it would produce a net amount of electricity, offering a reason to keep a treatment plant running besides just treating wastewater. “Even if it’s only powering a cell phone tower, that would be a reason enough to keep it going,” he says.

David Bagley, a scientist at the University of Toronto, has calculated that the energy potential in wastewater is almost 10 times the cost to treat it. “If we could achieve just one-twentieth of that power, we could break even,” Logan says. “We’re confident we’re going to be able to do more than that.” “In our system, the two electrodes are separated by a proton exchange membrane (PEM), just like in a conventional hydrogen fuel cell,” says Logan. “It opens the door to using existing hydrogen-gas based stack technologies with bacteria in water.”

At the moment, scientists can’t exactly pull a hydrogen fuel cell off the shelf and use it to treat wastewater, but the design principles are very similar. Wastewater flows on one side of the cell and air flows on the other, continuously generating electricity while also removing organic matter from the water. The device also could be used to treat waste from the food processing industry and farms — especially hog farms, which have tremendous problems with costs and odors, Logan says. NASA scientists are even developing a similar technology to be used in manned space missions, turning the astronauts’ waste into extra power. Logan plans to build a larger version of his microbial fuel cell for demonstrations; he hopes to have the design completed in about six months.

The American Chemical Society is a nonprofit organization, chartered by the U.S. Congress, with a multidisciplinary membership of more than 159,000 chemists and chemical engineers. It publishes numerous scientific journals and databases, convenes major research conferences and provides educational, science policy and career programs in chemistry. Its main offices are in Washington, D.C., and Columbus, Ohio.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>