Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC Irvine scientists develop world’s longest electrically conducting nanotubes

19.10.2004


Breakthrough discovery is 10 times longer than previous current-carrying nanotubes, paves way for supercomputer and health care applications

UC Irvine today announced that scientists at The Henry Samueli School of Engineering have synthesized the world’s longest electrically conducting nanotubes. These 0.4 cm nanotubes are 10 times longer than previously created electrically conducting nanotubes. The breakthrough discovery may lead to the development of extremely strong, lightweight materials and ultradense nano-memory arrays for extremely powerful computers, ultralow-loss power transmission lines, and nano-biosensors for use in health care applications.

A nanotube is commonly made from carbon and consists of a graphite sheet seamlessly wrapped into a cylinder only a few nanometers wide. A nanometer is one billionth of a meter, about the size of 10 atoms strung together.



Peter Burke, assistant professor of electrical engineering and computer science, conducted the research along with graduate students Shengdong Li, Christopher Rutherglen and Zhen Yu. "We are extremely excited about this discovery," said Burke. "Recently there have been several key advances around the world in synthesizing very long carbon nanotubes. Our research has taken a significant step forward by showing we can pass electricity through these long nanotubes. Significantly, we have found that our nanotubes have electrical properties superior to copper. This clearly shows for the first time that long nanotubes have outstanding electrical properties, just like short ones."

Researchers grew the carbon nanotubes using a simple procedure: Burke allowed natural gas to react chemically with tiny iron particles or "nanoparticles" inside a small furnace. By placing a small amount of gold under the iron, Burke’s group found that ultralong nanotubes grow; whereas without the gold, only short nanotubes grow. Because nanotubes are so small, it is difficult to connect regular wires to them. Using gold in the growth process, Burke solved this problem by growing nanotubes that come out already attached to gold wires. An added scientific benefit is that Burke was able to accurately determine how the electrical resistance of a nanotube depends on its length. The relationship between resistance and physical size (length) is a key property of any new material. Burke’s finding indicates that the electrical conductivity is greater than for copper wires of the same size, a world record for any nano-material of this length.

Lisa Briggs | EurekAlert!
Further information:
http://www.uci.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>