Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Nanowire with a Surprise

18.10.2004


New research may advance the nanoelectronics field



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and their collaborators have discovered that a short, organic chain molecule with dimensions on the order of a nanometer (a billionth of a meter) conducts electrons in a surprising way: It regulates the electrons’ speed erratically, without a predictable dependence on the length of the wire. This information may help scientists learn how to use nanowires to create components for a new class of tiny electronic circuits.

The conducting chain molecule, or “nanowire,” that Smalley and his collaborators studied is composed of units of phenyleneethynylene (PE), which consists of hydrogen and carbon atoms. Like the links that make up a chain, PE units join together to form a nanowire known as oligophenyleneethynylene (OPE). PE, and therefore OPE, contains single, double, and triple carbon-carbon bonds.


The double and triple carbon-carbon bonds promote strong electronic interactions along OPE such that it conducts an electric current with low electrical resistance. This property makes OPE nanowires good candidates for components in nanoelectronic circuits, very small, fast circuits expected to replace those currently used in computers and other electronics.

Smalley and his collaborators found that as they increased the length of the OPE wire from one to four PE units, the electrons moved across the wire faster, slower, then faster again, and so on. In this way, OPE does not behave like a similar nanowire the group has also studied, called oligophenylenevinylene (OPV), which contains single and double carbon-carbon bonds. When they made OPV wires longer, the electrons’ speed remained the same. They observed the same result when they studied short wires made of alkanes, another group of hydrocarbon molecules that contains only single carbon-carbon bonds.

The researchers think that the unusual behavior of OPE may be due to its tendency to slightly change its three-dimensional shape. Increasing the wire’s length may trigger new shapes, which may slow down or speed up the electrons as they cross the wire.

This variable resistance could be a benefit. “If the odd behavior is due to the conformational variability of the OPE wires, figuring out a way to control the tendency of OPE to change its shape could be useful,” said Smalley. “For example, diodes and transistors are two types of devices based on variable electrical resistance.”

The scientists made another significant finding: They dramatically increased the rate at which the electrons moved across the wire by substituting a methyl hydrocarbon group onto the middle unit of a three-unit OPE wire. “Because OPE seems sensitive to this substitution, we hope to find another hydrocarbon group that may further increase the electrons’ speed, and therefore OPE’s ability to conduct electrons,” said Smalley.

Experimental Background

In the experiment, Smalley and his group created an OPE wire “bridge” between a gold electrode and a “donor-acceptor” molecule. To measure the electron transfer rate across the bridge, they used a technique they developed in which a laser rapidly heats up the electrode. This causes a change in the electrical potential (voltage) between the electrode and the donor-acceptor, which disrupts the motion of electrons crossing the bridge. The group used a very sensitive voltmeter to measure how quickly the voltage changed in response to the altered electron movement. From these measurements, they determined how fast the electrons were moving through the wire.

This research, performed in collaboration with Marshall Newton of the Brookhaven Chemistry Department and researchers at Stanford University, Clemson University, and Motorola, is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the National Science Foundation.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht The world's most powerful acoustic tractor beam could pave the way for levitating humans
22.01.2018 | University of Bristol

nachricht Siberian scientists learned how to reduce harmful emissions from HPPs
22.01.2018 | Siberian Federal University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>