Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Nanowire with a Surprise

18.10.2004


New research may advance the nanoelectronics field



Scientists at the U.S. Department of Energy’s Brookhaven National Laboratory and their collaborators have discovered that a short, organic chain molecule with dimensions on the order of a nanometer (a billionth of a meter) conducts electrons in a surprising way: It regulates the electrons’ speed erratically, without a predictable dependence on the length of the wire. This information may help scientists learn how to use nanowires to create components for a new class of tiny electronic circuits.

The conducting chain molecule, or “nanowire,” that Smalley and his collaborators studied is composed of units of phenyleneethynylene (PE), which consists of hydrogen and carbon atoms. Like the links that make up a chain, PE units join together to form a nanowire known as oligophenyleneethynylene (OPE). PE, and therefore OPE, contains single, double, and triple carbon-carbon bonds.


The double and triple carbon-carbon bonds promote strong electronic interactions along OPE such that it conducts an electric current with low electrical resistance. This property makes OPE nanowires good candidates for components in nanoelectronic circuits, very small, fast circuits expected to replace those currently used in computers and other electronics.

Smalley and his collaborators found that as they increased the length of the OPE wire from one to four PE units, the electrons moved across the wire faster, slower, then faster again, and so on. In this way, OPE does not behave like a similar nanowire the group has also studied, called oligophenylenevinylene (OPV), which contains single and double carbon-carbon bonds. When they made OPV wires longer, the electrons’ speed remained the same. They observed the same result when they studied short wires made of alkanes, another group of hydrocarbon molecules that contains only single carbon-carbon bonds.

The researchers think that the unusual behavior of OPE may be due to its tendency to slightly change its three-dimensional shape. Increasing the wire’s length may trigger new shapes, which may slow down or speed up the electrons as they cross the wire.

This variable resistance could be a benefit. “If the odd behavior is due to the conformational variability of the OPE wires, figuring out a way to control the tendency of OPE to change its shape could be useful,” said Smalley. “For example, diodes and transistors are two types of devices based on variable electrical resistance.”

The scientists made another significant finding: They dramatically increased the rate at which the electrons moved across the wire by substituting a methyl hydrocarbon group onto the middle unit of a three-unit OPE wire. “Because OPE seems sensitive to this substitution, we hope to find another hydrocarbon group that may further increase the electrons’ speed, and therefore OPE’s ability to conduct electrons,” said Smalley.

Experimental Background

In the experiment, Smalley and his group created an OPE wire “bridge” between a gold electrode and a “donor-acceptor” molecule. To measure the electron transfer rate across the bridge, they used a technique they developed in which a laser rapidly heats up the electrode. This causes a change in the electrical potential (voltage) between the electrode and the donor-acceptor, which disrupts the motion of electrons crossing the bridge. The group used a very sensitive voltmeter to measure how quickly the voltage changed in response to the altered electron movement. From these measurements, they determined how fast the electrons were moving through the wire.

This research, performed in collaboration with Marshall Newton of the Brookhaven Chemistry Department and researchers at Stanford University, Clemson University, and Motorola, is funded by the Office of Basic Energy Sciences within the U.S. Department of Energy’s Office of Science and the National Science Foundation.

Laura Mgrdichian | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Chlamydia: How bacteria take over control

28.03.2017 | Life Sciences

A Challenging European Research Project to Develop New Tiny Microscopes

28.03.2017 | Medical Engineering

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>