Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smaller microchips that consume less energy

10.09.2004


To develop ever-smaller chips that consume less. These are the indispensable requirements of the current market for portable applications such as mobile telephone technology and biomedical systems, obtaining correct and trouble-free operation of the devices over the maximum possible duration of time. One of the techniques which, in fact, can be used for the development of this type of reduced-size, low-consumption microchip is one analysed by Carlos Aristóteles de la Cruz in his PhD defended at the Public University of Navarre. The thesis is titled, “Design and Implementation of Very Low Voltage Square-Root Domain Circuits with On-chip Tuning”.

Silicon prototypes

The SRD (Square-Root Domain) techniques is one of the methods enabling the design of chips or integrated circuits with low power sources, i.e. circuits that can function suitably in those situations where there is a low level of power supply. The technique is based on the design of circuits the internal processing system of which is non-lineal – although the input-output relation is lineal.



The PhD not only presents simulations of designed systems, but also provides experimental results obtained from manufactured prototypes of all the circuits and systems, which demonstrate the possibility of being included in practice designs. Moreover, second-order and non-lineal analyses were carried out on the circuits in order to achieve a better understanding of the functioning of these circuits and systems.

Less consumption and space

The integrated circuits are made up of transistors that unite basic cells and these, in turn, are grouped together forming integrated circuit systems. In this way, the contributions of the thesis, both to the construction of the novel basic cells as well as to the configuration of systems developed therefrom.

Thus, the thesis offers a basic cell design for chips which enables a power supply at a lower voltage. It points out that present cells operating on 3.3 volts can be reduced to 1.5 volts. To this end, conventional techniques of basic cell design have been used (through translineal links). Specifically, floating power supplies are used, introduced as an integral part of the translineal links without modifying its principal function of creating SRD systems. This contribution to circuitry not only enables the desired operation to take place at low tension but also allows the cells to have a good dynamic range.

Likewise, the PhD has developed a completely new technique for designing non-lineal basic cells. This technique enables a considerable simplification of the internal circuits of these cells, avoiding redundant components present with previous techniques. Moreover, the resulting SRD filters have a greater bandwidth, take up less surface area on the chip, require less power consumption and offer approximately the same characteristics and yields as the previous models.

The technique developed by Carlos de la Cruz also enables, with slight modifications, obtaining other useful d.c. circuits. A novel set of circuits has been developed, amongst which are ones which calculate a geometric average, squared power, one- and four-quadrant multipliers and a RMS-DC converter.

Finally, the PhD involved the design of an SRD filter with a tuning system for compensating for errors introduced into the filter parameters.

Garazi Andonegi | alfa
Further information:
http://www.basqueresearch.com
http://www.elhuyar.com

More articles from Power and Electrical Engineering:

nachricht Supersonic waves may help electronics beat the heat
18.05.2018 | DOE/Oak Ridge National Laboratory

nachricht Researchers control the properties of graphene transistors using pressure
17.05.2018 | Columbia University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>