Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe, the bright spark in converting sunlight into electricity: First ever calibration laboratory accreditation.

10.09.2004


Solar Photovoltaic Systems converting sunlight into electricity are a key technology in reaching Europe’s objectives of safe, secure and sustainable energy supply. World-wide production of solar electricity has continued to increase by more than 30% per year, reaching 1000 megawatts (enough to meet the domestic needs of 660.000 European citizens) in 2004 and has become one of Europe’s foremost growth industries. Certified power measurements are crucial to guaranteeing the competitiveness of solar electricity, as any measurement uncertainty could translate directly into lost revenue. In Germany alone, where over 400 megawatts are installed, representing over 2 billion Euro, a measurement error of 2% would result in a 40 million Euro loss or gain. With the newly awarded status of Accredited Calibration Laboratory, the European Solar Test Installation (ESTI) at the Commission’s Joint Research Centre has been confirmed as the European Reference point for the verification of all Solar Photovoltaic Electricity Systems.

The European Commission has identified Solar Photovoltaics as a key source of the future energy supply of Europe in its White Paper on renewable energy sources (COM(97) 599 final Energy for the future - renewable sources of energy: White Paper). With this further development and support of Europe’s industrial base, the Joint Research Centre plays an important role in underpinning Europe’s industrial competitiveness while promoting sustainable environmental technologies in support of the Unions wider goals.

Calibration of Solar Cells - not only a scientific exercise



ESTI has been delivering power measurements to the European Photovoltaic Industry for over two decades and has developed and pioneered many of the international standards and procedures adopted world-wide for the measurement and calibration of Solar Electricity. With its new status as an accredited calibration laboratory, ESTI has become the first laboratory world-wide to independently demonstrate the calibration and traceability of the power measurements of solar electricity systems to the international System of Units (SI).

In today’s highly competitive photovoltaic market, products are sold based on their electrical performance as the single-most important criterion. The Euro per Watt as measured at ESTI can determine the profit or loss of Europe’s rapidly expanding solar electricity industry. By ensuring the highest standards and quality in the verification of the power of Solar Electricity, ESTI provides the technical base for Europe’s industry to continue playing a leading role in the world-wide energy market.

For Europe, certified measurements are beneficial to foster trade between Member States and to reduce market barriers.

Meeting the highest international standards

ESTI is pro-actively investing in the international harmonisation of test procedures, by participation in standards bodies (notably the International Electrotechnical Commission, IEC) and agreements on quality assurance for photovoltaic products. Accreditation under the ISO17025 standard requires a living quality system, validation and verification procedures, participation in international intercomparisons, and defined measurement certainties. ESTI is the first laboratory meeting these stringent requirements on accreditation for calibration by the French Accreditation Body COFRAC.

Berta Duane | alfa
Further information:
http://www.jrc.cec.eu.int
http://re.jrc.cec.eu.int

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>