Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Guiding Light on the Nanoscale

03.09.2004


At left a zinc-oxide nanowire laser is pumped with light, which is channeled into a tin-oxide nanoribbon at a junction between the two materials and guided through the rest of the ribbon’s length. At right is an electron microscope image of the junction between wire and ribbon.


Another important step towards realizing the promise of lightning fast photonic technology has been taken by scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley. Researchers have demonstrated that semiconductor nanoribbons, single crystals measuring tens of hundreds of microns in length, but only a few hundred or less nanometers in width and thickness (about one ten-millionth of an inch), can serve as "waveguides" for channeling and directing the movement of light through circuitry.

"Not only have we shown that semiconductor nanoribbons can be used as low-loss and highly flexible optical waveguides, we’ve also shown that they have the potential to be integrated within other active optical components to make photonic circuits," says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and a professor with UC Berkeley’s Chemistry Department, who led this research.

The research results of Yang and his team are reported in the August 27, 2004 issue of the journal Science. Co-authoring the paper along with Yang were Matt Law, Donald Sirbuly, Justin Johnson, Josh Goldberger and Richard Saykally, all of whom are with affiliated with Berkeley Lab, UC Berkeley, or both.



In photonic technology, or photonics, the use of electrons moving through semiconductors as information carriers is replaced with the movement of light waves, as measured in units of energy called photons. Whereas electrons must carry information sequentially, one electron at a time, with photons of light there’s virtually no limit to the number of information packets that can simultaneously be transmitted. Call it unparalleled parallel processing.

Hints of the potential of photonics can be glimpsed in today’s fiber-optic communications, where a single optical fiber can carry the equivalent of 300,000 telephone calls at the same time. But the power of fully realized photonics goes far beyond this. For example, it’s been estimated that a photonic internet could transmit data at 160 gigabits per second, which is thousands of times faster than today’s typical high-speed connection. Another possibility is the optical computer, which could solve problems in seconds that would take today’s electronic computers months or even years to solve.

For the promise of photonics to be delivered, however, scientists must first find a way to manipulate and route photons with the same dexterity as they manipulate and route electrons. Whereas other research efforts have successfully experimented with the use of photonic band-gap materials to accomplish this, Yang and his colleagues have focused on the chemical synthesis of nanowires and nanoribbons — they’re like nanotubes only solid throughout rather than hollow inside — that can then be assembled into photonic circuits.

"Chemically synthesized nanowires and nanoribbons have several features that make them good photonic building blocks," says Yang. "They offer inherent one-dimensionality, a diversity of optical and electrical properties, good size control, low surface roughness and, in principle, the ability to operate above and below light-diffraction limits."

Yang and his colleagues synthesized their nanoribbon waveguides from tin oxide, a semiconductor of keen technological interest for its exceptional potential for use in transporting both photons and electrons in nanoscale (also referred to as "subwavelength") components. The single crystalline nanoribbons they produced measured about 1,500 microns in length and featured a variety of widths and thicknesses. Yang says ribbons that measured between 100 to 400 nanometers in width and thickness proved to be ideal for guiding visible and ultraviolet light.

"To steer visible and ultraviolet light within dielectric waveguides, such as the tin oxide crystals we were synthesizing, we needed to make sure that a sufficient portion of the light’s electromagnetic field was confined within the nanostructures so there would be minimal optical transmission loss," Yang says. "Considering the dielectric constant of the tin oxide, it follows that the diameter of 100 to 400 nanometers would be ideal for waveguiding light that measures from 300 to 800 nanometers in wavelengths."

In their tests, Yang and his colleagues attached nanowire lasers and optical detectors to opposite ends of their tin oxide nanoribbons, then demonstrated that light could be propagated and modulated through subwavelength optical cavities within the nanoribbons. The nanoribbons were long and strong enough to be pushed, bent, and shaped with the use of a commercial micromanipulator under an optical microscope. Freestanding ribbons were also extremely flexible and could be curved through tight S-turns and twisted into a variety of shapes, which Yang says is "remarkable for a crystal that is brittle in its bulk form."

Yang also says that while the nanoribbon waveguides can be coupled together to create optical networks that could serve as the basis of miniaturized photonic circuitry, the ribbons need to be in close proximity, preferably in direct physical contact, to enable an efficient transfer of light between them. "We tested various coupling geometries and found that a staggered side-by-side arrangement, in which two ribbons interact over a distance of several micrometers, outperforms direct end-to-end coupling," Yang says.

The nanoribbon waveguides that Yang and his co-authors report in their Science paper are the newest addition to the growing assortment of nanosized device elements that Yang and his research group have been able to make. Their "toolbox" now includes nanoscale lasers and photodetectors, in addition to the nanoribbon waveguides.

"Ultimately, we would like to integrate all these individual components together into a photonic system-on-a-chip, so that many photonic operations, including light emission, routing, and detection, can be done on a much smaller scale," says Yang.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>