Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environmental costs of home construction lower with wise choice, reuse of building materials

27.08.2004


Researchers comparing two versions of this typical Minneapolis house – 2,100 square feet in size and built to code – determined that building the structure using steel framing would use 17 percent more energy than building it with wood framing. Graphic credit: CORRIM


Most of the energy that goes into building U.S. homes is consumed – not by the power tools, welding and trucking during construction – but during the manufacture of the building materials, according to a comprehensive life-cycle assessment comparing typical wood-, steel- and concrete-frame homes.

Using the least energy-intensive building materials – and taking steps toward such things as recycling and reusing more building materials – makes sense considering the nation’s energy concerns and attendant issues of pollution and global warming, according to University of Washington’s Bruce Lippke, professor of forest resources. He and 22 other authors recently published a report tallying the environmental impact of home construction.

Considering the energy required to produce building materials, construct, maintain and demolish a house on a time period of 75 years is one part of a cradle-to-grave analysis known as a life-cycle assessment. In this case researchers determined that the construction of a hypothetical Minneapolis steel-frame home used 17 percent more energy than the matching wood-frame home. Constructing the study’s hypothetical Atlanta concrete-frame home used 16 percent more energy than a matching wood-frame house. The designs in both cases were typical of homes in those regions.



Choosing construction materials wisely is significant, Lippke says, because building 1.7 million houses using wood-, steel- and concrete-frame construction each year consumes as much energy as heating and cooling 10 million or more homes a year. Better material selection and house design could reduce energy use during home construction substantially, he says.

The energy tallied for the study included not just electricity but also such things as diesel and fuel oil to extract and haul materials, natural gas to generate steam in lumber mills and electricity for steel mills.

"Everything kind of flows from energy consumption," Lippke says. "If you’re using energy, you’re polluting water, polluting air and kicking out carbon dioxide emissions."

Indeed, the carbon emissions associated with energy use represented one of the more important environmental impacts, the report says. The researchers considered, for example, carbon dioxide, methane and nitrous oxide emissions generated during the life cycles of the homes, as well as the length of time these greenhouse gases linger in the atmosphere, to determine the global warming potential of different construction materials. They estimate the global-warming potential of the steel-frame home to be 26 percent higher than the wood-frame, and the concrete-frame home was 31 percent higher than the comparable wood-frame.

The use of wood products instead of steel or concrete can farther reduce the greenhouse emissions from fossil fuels wherever lumber mills generate power and heat using bark, sawdust and other byproducts of milling. More than half the energy required by mills currently comes from these residuals, a renewable source of energy compared to fossil fuels.

Two designs of typical houses were analyzed in the study by the Consortium for Research on Renewable Industrial Materials, a research group started by 15 universities and research institutes, see http://www.corrim.org/. The $1 million effort was supported by those institutions, the United States Department of Agriculture Forest Service, U.S. Department of Energy and major wood-product manufacturers.

A 12-page summary recently published in the Forest Products Journal and the full report are available at http://www.corrim.org/reports/. Life-cycle inventory international protocol experts reviewed the report and information from this study is slated to become part of the life-cycle inventory database for the designers and engineers at http://www.nrel.gov/lci/.

A 2,100-square-foot house designed for the cold Minneapolis climate was used to compare wood-frame with steel-frame construction while a 2,200-square-foot house was designed for the hot and humid Atlanta climate was used to compare wood-frame with concrete-frame construction.

There are a number of products other than wood that are common to all the designs, such as glass for windows, gypsum for wall board and sheathing, asphalt roofing and concrete for such things as foundations. Concrete products, for example, make up between 72 and 78 percent of the mass of the hypothetical homes that are not concrete-frame. These materials are energy-intensive on their own and make up the largest percentage of the energy required for home construction.

The report offers many suggestions of other opportunities to reduce the energy demands of home construction that include:

Redesigning houses to use less fossil-fuel intensive products;
Changing building codes that result in excessive use of wood, steel and concrete
Recycling demolition wastes;
Increasing durability of homes through improved products, construction designs and maintenance practices.

The Consortium for Research on Renewable Industrial Materials has started a new $1 million research project that expands the current effort to include all U.S. wood-product supply regions, other non-structural wood products and additional research on design and process changes to reduce environmental burdens.

Sandra Hines | EurekAlert!
Further information:
http://www.u.washington.edu
http://www.corrim.org/reports/
http://www.nrel.gov/lci/

More articles from Power and Electrical Engineering:

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>