Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular assemblies created to convert water to hydrogen gas

26.08.2004


Wonder where the fuel will come from for tomorrow’s hydrogen-powered vehicles? Virginia Tech researchers are developing catalysts that will convert water to hydrogen gas. The research will be presented at the 228th American Chemical Society National Meeting in Philadelphia August 22-26, 2004



Supramolecular complexes created by Karen Brewer’s group at Virginia Tech convert light energy (solar energy) into a fuel that can be transported, stored, and dispensed, such as hydrogen gas.

The process has been called artificial photosynthesis, says Brewer, associate professor of chemistry. "Light energy is converted to chemical energy. Solar light is of sufficient energy to split water into hydrogen and oxygen gas, but this does not happen on its own; we need a catalysts to make this reaction occur."


One major challenge is to use light to bring together the multiple electrons needed for fuel production reactions. Electrons are the negatively charged particles that surround an atom’s nucleus, allowing atoms to react and form bonds.

Previous research has focused on collecting electrons using light energy. The Brewer group has gone the next step and created molecular machines that use light to bring electrons together (photoinitiated electron collection) then deliver the electrons to the fuel precursor, in this case, water, to produce hydrogen.

The researchers create a large molecular assembly called a supramolecular complex. Light signals this molecular assembly or machine to collect electrons and make them available for delivery to substrates.

Water is readily available and cheap, says Brewer, "but, so far, our compound is expensive. The goal is to make it catalytic and to couple it to oxygen production. We are working to build a supramolecular complex that will initiate the collection and movement of electrons and bonding of atoms without being destroyed in the process, so we don’t have to build another molecular machine every time we want to convert water to hydrogen." Our systems do functioning catalytically but the efficiency needs to be enhanced.

Mark Elvington, a graduate student in chemistry, will present the research, "Photochemical reactivity of mixed-metal supramolecular complexes: Applications as photochemical molecular devices," at 9:30 a.m., Wednesday, Aug. 25, at Pennsylvania Convention Center room113A. Co-authors are Brewer, Elvington, and Ran Miao, also a Ph.D. student in chemistry at Virginia Tech from Fudan University.

Susan Trulove | EurekAlert!
Further information:
http://www.vt.edu
http://www.chem.vt.edu/chem-dept/brewer/energyresearch.htm

More articles from Power and Electrical Engineering:

nachricht Did you know that infrared heat and UV light contribute to the success of your barbecue?
26.07.2017 | Heraeus Noblelight GmbH

nachricht Ultrathin device harvests electricity from human motion
24.07.2017 | Vanderbilt University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>