Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vast new energy source almost here

24.08.2004


Solar hydrogen fuel dream will soon be a reality

Australian scientists predict that a revolutionary new way to harness the power of the sun to extract clean and almost unlimited energy supplies from water will be a reality within seven years.
Using special titanium oxide ceramics that harvest sunlight and split water to produce hydrogen fuel, the researchers say it will then be a simple engineering exercise to make an energy-harvesting device with no moving parts and emitting no greenhouse gases or pollutants.


It would be the cheapest, cleanest and most abundant energy source ever developed: the main by-products would be oxygen and water. "This is potentially huge, with a market the size of all the existing markets for coal, oil and gas combined," says Professor Janusz Nowotny, who with Professor Chris Sorrell is leading a solar hydrogen research project at the University of New South Wales (UNSW) Centre for Materials and Energy Conversion. The team is thought to be the most advanced in developing the cheap, light-sensitive materials that will be the basis of the technology. "Based on our research results, we know we are on the right track and with the right support we now estimate that we can deliver a new material within seven years," says Nowotny.

Sorrell says Australia is ideally placed to take advantage of the enormous potential of this new technology: "We have abundant sunlight, huge reserves of titanium and we’re close to the burgeoning energy markets of the Asia-Pacific region. But this technology could be used anywhere in the world. It’s been the dream of many people for a long time to develop it and it’s exciting to know that it is now within such close reach."

The results of the team’s work will be presented in Sydney on 27 August to delegates from Japan, Germany, the United States and Australia at a one-day International Conference on Materials for Hydrogen Energy at UNSW.

Among them will be the inventors of the solar hydrogen process, Professors Akira Fujishima and Kenichi Honda. Both are frontrunners for the Nobel Prize in chemistry and are the laureates of the 2004 Japan Prize.

Since the Japanese researchers’ 1971 discoveries, science has made major advances in achieving one of the ultimate goals of science and technology – the design of materials required to split water using solar light.

The UNSW team opted to use titania ceramic photoelectrodes because they have the right semiconducting properties and the highest resistance to water corrosion.

Solar hydrogen, Professor Sorrell argues, is not incompatible with coal. It can be used to produce solar methanol, which produces less carbon dioxide than conventional methods. "As a mid-term energy carrier it has a lot to say for it," he says.

Mary O’Malley | EurekAlert!
Further information:
http://www.unsw.edu.au

More articles from Power and Electrical Engineering:

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

nachricht Magic off the cuff
11.07.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>