Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Taking charge of molecular wires


Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components in solar energy storage systems. The scientists were studying how electric charge is distributed in polymer molecule chains that are several nanometers, or billionths of a meter, in length.

Brookhaven chemist John Miller, the study’s lead scientist, will present the group’s results on Sunday, August 22, 2004, at the 228th national meeting of the American Chemical Society in Philadelphia, Pennsylvania (Pennsylvania Convention Center, Ballroom B, 2:45 p.m.).

"Long molecules that can act as molecular wires, of which there are many variations, are one type of nanoscale object with the potential to lead to new technologies, due to their ability to conduct electricity and very small size," said Miller. "But unlike conventional metal wires, polymer nanowires need assistance in order to conduct."

"Using a cluster of high-energy electrons from an accelerator, we can quickly add an extra negative or positive charge to a polymer molecular wire. When the end of the wire contains a chemically-attached ’trap’ molecule, one where the electrons will be at a lower, more stable energy, the charge moves to it. This allows us to ’see’ that the wires conduct electrons quickly, and over long distances."

One potential application for this finding is in the solar energy industry, particularly in a new field called "plastic solar." In conventional solar cells, incoming solar energy is transferred to the electrons in a semiconducting material, such as silicon, which knocks many of them loose. These electrons are guided to an electrode, creating a current that can be drawn off and used.

The plastic solar movement aims to replace materials like silicon with polymer nanowires, which are cheaper and lighter. Another advantage of plastic solar cells is their physical versatility. Due to the flexible, bendable nature of polymer materials, plastic solar cells could be placed in areas of greatly varying size and surface type. Conventional cells are rigid and costly, and the current production method limits their size.

In plastic solar cells constructed to date, electrons must jump from one polymer wire to another in order to reach the electrodes. But as the electrons leave one wire in order to jump to the next, they encounter barriers, which require larger amounts of energy to traverse than the barriers that hinder electron movement within typical nanowires. This slows down the electrons.

Miller and his collaborators want to learn how to eliminate the barriers. But first, they must understand how the electrons move within single polymer wires -- the amount of energy the electrons need, for example. Later, this information can be used to choose the best polymer conductors and design structures for plastic solar cells.

The group observed electrons move down a polymer wire by immersing the wire in an organic fluid and shooting high-energy electrons through the fluid. The electrons were supplied by Brookhaven’s Laser-Electron Accelerator Facility (LEAF), which accelerates electrons to high energies for research applications. The energetic LEAF electrons either kick away some of the fluid molecules’ electrons or allow the molecules to give up "holes" -- mobile, empty spaces that carry positive charge. As a result, the submerged nanowire receives one of these electrons or holes.

"This new method injects extra negative or positive charges into the wires and allows us to observe the charges quickly diffuse across it. This observation is a key step toward developing polymer nanowires that are good conductors," Miller said.

In the future, Miller and his group also plan to look for ways to increase the conduction efficiency of the wires.

Karen McNulty Walsh | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>