Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking charge of molecular wires

23.08.2004


Scientists from the U.S. Department of Energy’s Brookhaven National Laboratory and the University of Florida have uncovered information that may help "molecular wires" replace silicon in micro-electronic circuits and/or components in solar energy storage systems. The scientists were studying how electric charge is distributed in polymer molecule chains that are several nanometers, or billionths of a meter, in length.



Brookhaven chemist John Miller, the study’s lead scientist, will present the group’s results on Sunday, August 22, 2004, at the 228th national meeting of the American Chemical Society in Philadelphia, Pennsylvania (Pennsylvania Convention Center, Ballroom B, 2:45 p.m.).

"Long molecules that can act as molecular wires, of which there are many variations, are one type of nanoscale object with the potential to lead to new technologies, due to their ability to conduct electricity and very small size," said Miller. "But unlike conventional metal wires, polymer nanowires need assistance in order to conduct."


"Using a cluster of high-energy electrons from an accelerator, we can quickly add an extra negative or positive charge to a polymer molecular wire. When the end of the wire contains a chemically-attached ’trap’ molecule, one where the electrons will be at a lower, more stable energy, the charge moves to it. This allows us to ’see’ that the wires conduct electrons quickly, and over long distances."

One potential application for this finding is in the solar energy industry, particularly in a new field called "plastic solar." In conventional solar cells, incoming solar energy is transferred to the electrons in a semiconducting material, such as silicon, which knocks many of them loose. These electrons are guided to an electrode, creating a current that can be drawn off and used.

The plastic solar movement aims to replace materials like silicon with polymer nanowires, which are cheaper and lighter. Another advantage of plastic solar cells is their physical versatility. Due to the flexible, bendable nature of polymer materials, plastic solar cells could be placed in areas of greatly varying size and surface type. Conventional cells are rigid and costly, and the current production method limits their size.

In plastic solar cells constructed to date, electrons must jump from one polymer wire to another in order to reach the electrodes. But as the electrons leave one wire in order to jump to the next, they encounter barriers, which require larger amounts of energy to traverse than the barriers that hinder electron movement within typical nanowires. This slows down the electrons.

Miller and his collaborators want to learn how to eliminate the barriers. But first, they must understand how the electrons move within single polymer wires -- the amount of energy the electrons need, for example. Later, this information can be used to choose the best polymer conductors and design structures for plastic solar cells.

The group observed electrons move down a polymer wire by immersing the wire in an organic fluid and shooting high-energy electrons through the fluid. The electrons were supplied by Brookhaven’s Laser-Electron Accelerator Facility (LEAF), which accelerates electrons to high energies for research applications. The energetic LEAF electrons either kick away some of the fluid molecules’ electrons or allow the molecules to give up "holes" -- mobile, empty spaces that carry positive charge. As a result, the submerged nanowire receives one of these electrons or holes.

"This new method injects extra negative or positive charges into the wires and allows us to observe the charges quickly diffuse across it. This observation is a key step toward developing polymer nanowires that are good conductors," Miller said.

In the future, Miller and his group also plan to look for ways to increase the conduction efficiency of the wires.

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>