Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Advance in Gallium Nitride Nanowires

02.08.2004


When grown on a substrate of lithium aluminum oxide, gallium nitride nanowires are triangular in cross section.


The cross section of gallium nitride nanowires grown on a magnesium oxide substrate is hexagonal. Although compositionally identical, the electronic properties of nanowires differ with different crystal orientations.


A significant breakthrough in the development of the highly prized semiconductor gallium nitride as a building block for nanotechnology has been achieved by a team of scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley.

For the first time ever, the researchers have been able control the direction in which a gallium nitride nanowire grows. Growth direction is critical to determining the wire’s electrical and thermal conductivity and other important properties.

"Our results will come as a surprise to those who have said that growth direction can’t be controlled, that you get what you get when you grow semiconductor nanowires," says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and a professor with UC Berkeley’s Chemistry Department, who led the research.



A report discussing these research results first appeared in the online edition of the journal Nature Materials on July 25. In addition to Yang, co-authors of the report, "Crystallographic alignment of high-density gallium nitride nanowire arrays," were Yanfeng Zhang, Donald Sirbuly, and Jonathan Denlinger of Berkeley Lab, and Tevye Kuykendall, Peter Pauzauskie, and Joshua Goldberger of UC Berkeley.

Nanotechnologists are eager to tap into the enormous potential of gallium nitride for use in high-power, high-performance optoelectronic devices. Already, single-crystalline gallium nitride nanowires and nanotubes have shown promise in blue light emitting diodes, short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors.

"Control over nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and band gap may be used to tune the physical properties of nanowires made from a given material," Yang says.

Yang and his research group have been pioneers in the fabrication of semiconductor nanowires, especially gallium nitride, zinc oxide, and silicon/germanium. The wires they’ve produced measure only a few nanometers in diameter but stretch out to several microns in length. For this experimental work, they grew single-crystal gallium nitride nanowires using a metal–organic chemical vapor deposition (MOCVD) technique that was similar to an earlier technique they used to produce nanowire lasers.

In their earlier work, Yang and his group demonstrated the ability to control the size, aspect ratio, position, and composition of their nanowires. Now they’ve added the ability to control crystallographic growth direction. The key to this new capability is the selection of a choice substrate.

Explains Yang, "In nanowires made from the exact same gallium nitride material but grown on different substrates, the light-emission of these wires was blue-shifted by 100 meV (milli-electron volts). We believe the emission difference is a clear manifestation of the different crystal growth directions."

For this study, Yang and his group used substrates of lithium aluminum oxide and magnesium oxide. The crystals of both materials are geometrically compatible with gallium nitride crystals, but the lithium aluminum oxide features a two-fold symmetry that matches the symmetry along one plane of the gallium nitride crystals, whereas the magnesium oxide has a three-fold symmetry that matches gallium nitride symmetry along a different plane.

As a result, when a vapor of gallium nitride condenses on either of these substrates, the resulting nanowires grow perpendicular to the substrate but aligned in a direction unique to each substrate. Because of the different growth directions, cross sections of the gallium nitride nanowires grown on lithium aluminum oxide form an isosceles triangle, while the cross sections of those grown on magnesium oxide are hexagonal.

"Our goal is to put together a generic scheme for controlling the directional growth of all semiconductor nanowires," says Yang. "When we can do this, we will be able to answer some important fundamental questions, such as how would the carrier mobility, light emission, and thermoconductivity differ along different crystallographic directions for nanowires with the same compositions and crystal structures. The use of MOCVD for gallium nitride nanowire growth will also allow us to integrate nanowires and thin films of various compositions so we can start making real devices."

Yang believes that he and his group are within a few months of being able to produce a light-emission diode, a transistor, or a hybrid, nanowire-thin film laser.

This research effort was funded by the U.S. Department of Energy’s Office of Science, the Camille and Henry Dreyfus Foundation, the Beckman Foundation, and the National Science Foundation.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>