Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Advance in Gallium Nitride Nanowires

02.08.2004


When grown on a substrate of lithium aluminum oxide, gallium nitride nanowires are triangular in cross section.


The cross section of gallium nitride nanowires grown on a magnesium oxide substrate is hexagonal. Although compositionally identical, the electronic properties of nanowires differ with different crystal orientations.


A significant breakthrough in the development of the highly prized semiconductor gallium nitride as a building block for nanotechnology has been achieved by a team of scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley.

For the first time ever, the researchers have been able control the direction in which a gallium nitride nanowire grows. Growth direction is critical to determining the wire’s electrical and thermal conductivity and other important properties.

"Our results will come as a surprise to those who have said that growth direction can’t be controlled, that you get what you get when you grow semiconductor nanowires," says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and a professor with UC Berkeley’s Chemistry Department, who led the research.



A report discussing these research results first appeared in the online edition of the journal Nature Materials on July 25. In addition to Yang, co-authors of the report, "Crystallographic alignment of high-density gallium nitride nanowire arrays," were Yanfeng Zhang, Donald Sirbuly, and Jonathan Denlinger of Berkeley Lab, and Tevye Kuykendall, Peter Pauzauskie, and Joshua Goldberger of UC Berkeley.

Nanotechnologists are eager to tap into the enormous potential of gallium nitride for use in high-power, high-performance optoelectronic devices. Already, single-crystalline gallium nitride nanowires and nanotubes have shown promise in blue light emitting diodes, short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors.

"Control over nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and band gap may be used to tune the physical properties of nanowires made from a given material," Yang says.

Yang and his research group have been pioneers in the fabrication of semiconductor nanowires, especially gallium nitride, zinc oxide, and silicon/germanium. The wires they’ve produced measure only a few nanometers in diameter but stretch out to several microns in length. For this experimental work, they grew single-crystal gallium nitride nanowires using a metal–organic chemical vapor deposition (MOCVD) technique that was similar to an earlier technique they used to produce nanowire lasers.

In their earlier work, Yang and his group demonstrated the ability to control the size, aspect ratio, position, and composition of their nanowires. Now they’ve added the ability to control crystallographic growth direction. The key to this new capability is the selection of a choice substrate.

Explains Yang, "In nanowires made from the exact same gallium nitride material but grown on different substrates, the light-emission of these wires was blue-shifted by 100 meV (milli-electron volts). We believe the emission difference is a clear manifestation of the different crystal growth directions."

For this study, Yang and his group used substrates of lithium aluminum oxide and magnesium oxide. The crystals of both materials are geometrically compatible with gallium nitride crystals, but the lithium aluminum oxide features a two-fold symmetry that matches the symmetry along one plane of the gallium nitride crystals, whereas the magnesium oxide has a three-fold symmetry that matches gallium nitride symmetry along a different plane.

As a result, when a vapor of gallium nitride condenses on either of these substrates, the resulting nanowires grow perpendicular to the substrate but aligned in a direction unique to each substrate. Because of the different growth directions, cross sections of the gallium nitride nanowires grown on lithium aluminum oxide form an isosceles triangle, while the cross sections of those grown on magnesium oxide are hexagonal.

"Our goal is to put together a generic scheme for controlling the directional growth of all semiconductor nanowires," says Yang. "When we can do this, we will be able to answer some important fundamental questions, such as how would the carrier mobility, light emission, and thermoconductivity differ along different crystallographic directions for nanowires with the same compositions and crystal structures. The use of MOCVD for gallium nitride nanowire growth will also allow us to integrate nanowires and thin films of various compositions so we can start making real devices."

Yang believes that he and his group are within a few months of being able to produce a light-emission diode, a transistor, or a hybrid, nanowire-thin film laser.

This research effort was funded by the U.S. Department of Energy’s Office of Science, the Camille and Henry Dreyfus Foundation, the Beckman Foundation, and the National Science Foundation.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>