Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Advance in Gallium Nitride Nanowires

02.08.2004


When grown on a substrate of lithium aluminum oxide, gallium nitride nanowires are triangular in cross section.


The cross section of gallium nitride nanowires grown on a magnesium oxide substrate is hexagonal. Although compositionally identical, the electronic properties of nanowires differ with different crystal orientations.


A significant breakthrough in the development of the highly prized semiconductor gallium nitride as a building block for nanotechnology has been achieved by a team of scientists with the U.S. Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California at Berkeley.

For the first time ever, the researchers have been able control the direction in which a gallium nitride nanowire grows. Growth direction is critical to determining the wire’s electrical and thermal conductivity and other important properties.

"Our results will come as a surprise to those who have said that growth direction can’t be controlled, that you get what you get when you grow semiconductor nanowires," says Peidong Yang, a chemist with Berkeley Lab’s Materials Sciences Division and a professor with UC Berkeley’s Chemistry Department, who led the research.



A report discussing these research results first appeared in the online edition of the journal Nature Materials on July 25. In addition to Yang, co-authors of the report, "Crystallographic alignment of high-density gallium nitride nanowire arrays," were Yanfeng Zhang, Donald Sirbuly, and Jonathan Denlinger of Berkeley Lab, and Tevye Kuykendall, Peter Pauzauskie, and Joshua Goldberger of UC Berkeley.

Nanotechnologists are eager to tap into the enormous potential of gallium nitride for use in high-power, high-performance optoelectronic devices. Already, single-crystalline gallium nitride nanowires and nanotubes have shown promise in blue light emitting diodes, short-wavelength ultraviolet nanolasers, and nanofluidic biochemical sensors.

"Control over nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and band gap may be used to tune the physical properties of nanowires made from a given material," Yang says.

Yang and his research group have been pioneers in the fabrication of semiconductor nanowires, especially gallium nitride, zinc oxide, and silicon/germanium. The wires they’ve produced measure only a few nanometers in diameter but stretch out to several microns in length. For this experimental work, they grew single-crystal gallium nitride nanowires using a metal–organic chemical vapor deposition (MOCVD) technique that was similar to an earlier technique they used to produce nanowire lasers.

In their earlier work, Yang and his group demonstrated the ability to control the size, aspect ratio, position, and composition of their nanowires. Now they’ve added the ability to control crystallographic growth direction. The key to this new capability is the selection of a choice substrate.

Explains Yang, "In nanowires made from the exact same gallium nitride material but grown on different substrates, the light-emission of these wires was blue-shifted by 100 meV (milli-electron volts). We believe the emission difference is a clear manifestation of the different crystal growth directions."

For this study, Yang and his group used substrates of lithium aluminum oxide and magnesium oxide. The crystals of both materials are geometrically compatible with gallium nitride crystals, but the lithium aluminum oxide features a two-fold symmetry that matches the symmetry along one plane of the gallium nitride crystals, whereas the magnesium oxide has a three-fold symmetry that matches gallium nitride symmetry along a different plane.

As a result, when a vapor of gallium nitride condenses on either of these substrates, the resulting nanowires grow perpendicular to the substrate but aligned in a direction unique to each substrate. Because of the different growth directions, cross sections of the gallium nitride nanowires grown on lithium aluminum oxide form an isosceles triangle, while the cross sections of those grown on magnesium oxide are hexagonal.

"Our goal is to put together a generic scheme for controlling the directional growth of all semiconductor nanowires," says Yang. "When we can do this, we will be able to answer some important fundamental questions, such as how would the carrier mobility, light emission, and thermoconductivity differ along different crystallographic directions for nanowires with the same compositions and crystal structures. The use of MOCVD for gallium nitride nanowire growth will also allow us to integrate nanowires and thin films of various compositions so we can start making real devices."

Yang believes that he and his group are within a few months of being able to produce a light-emission diode, a transistor, or a hybrid, nanowire-thin film laser.

This research effort was funded by the U.S. Department of Energy’s Office of Science, the Camille and Henry Dreyfus Foundation, the Beckman Foundation, and the National Science Foundation.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>