Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Free electron laser reaches 10 kW

02.08.2004


The Free-Electron Laser (FEL) achieved 10 kilowatts of infrared laser light, making it the most powerful tunable laser in the world.


The Free-Electron Laser (FEL), supported by the Office of Naval Research and located at the U.S. Department of Energy’s Thomas Jefferson National Accelerator Facility, achieved 10 kilowatts of infrared laser light in late July, making it the most powerful tunable laser in the world. The recently upgraded laser’s new capabilities will enhance defense and manufacturing technologies, and support advanced studies of chemistry, physics, biology, and more.

"No other laser can provide the same benefits to manufacturing, medical research, biology, and basic physics," said ONR’s Directed Energy Program Officer, Mr. Quentin Saulter. "The Navy has chosen the FEL because it has multi-mission capabilities. Its unique, high-power and 24-hour capabilities are ideal for Department of Defense, industrial, and scientific applications."

The FEL program began as the One-Kilowatt Demonstration FEL, which broke power records and made its mark as the world’s brightest high average power laser. It delivered 2.1 kilowatts (kW) of infrared light, more than twice it was initially designed to achieve, before it was taken offline in November 2001 for an upgrade to 10 kW. "Whenever a technology gains a factor of ten improvement in performance, the achievement opens the door to many new applications, some foreseen, and some are simply very pleasant surprises," said Christoph Leemann, Jefferson Lab Director. "We look forward to operating this exciting new machine and carrying out the many experiments planned for it."



The FEL provides intense beams of laser light that can be tuned to a precise wavelength, and which are more powerful than beams from a conventional laser. Conventional lasers are limited in the wavelength of light they emit by the source of the electrons (such as a gas or crystal) used within the laser. In the FEL, electrons are stripped from their atoms and then whipped up to high energies by a linear accelerator. From there, they are steered into a wiggler--a device that uses an electromagnetic field to shake the electrons, forcing them to release some of their energy in the form of photons. As in a conventional laser, the photons are bounced between two mirrors and then emitted as a coherent beam of light. However, FEL operators can adjust the wavelength of the laser’s emitted light by increasing or decreasing the energies of the electrons in the accelerator or the amount of shaking in the wiggler.

"As we cross the 10 kW milestone, our team at Jefferson Lab is grateful for the considerable support and encouragement we have received from the Navy, Air Force and our colleagues across the country," said Fred Dylla, Jefferson Lab FEL program manager.

ONR’s Quentin Saulter manages the FEL development effort in cooperation with the Naval Sea Systems Command (NAVSEA) Directed Energy and Electric Weapons Office, headed by Captain Roger McGinnis. ONR is also funding the operation and optimization of the 10 kW FEL, and has several experiments slated to begin in early fall. A laser materials damage study will be co-funded with the Office of the Secretary of Defense High Energy Laser Joint Technology Office (HEL-JTO). In another project, scientists from the Naval Research Laboratory will study laser propagation through the atmosphere, with an eye to new laser-based shipboard defense strategies.

The Navy is also interested in the ultraviolet and terahertz light that the FEL can produce at world-record powers. The Navy intends on using the lessons learned from the development of the 10 kW FEL to begin design and construction of a 100 kW FEL over the next four years. Eventually, the Navy plans on moving the 100 kW laser to an over water test site, and scaling the power up to megawatt levels.

Jennifer Huergo | EurekAlert!
Further information:
http://www.onr.navy.mil
http://www.jlab.org

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>