Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Enhanced LEDs Promise To Transform Lighting

23.07.2004


A research team at Rensselaer Polytechnic Institute has created a new type of reflector that has dramatically improved LED (light-emitting diodes) luminance. The National Science Foundation (NSF) recently awarded the research team a three-year, $210,000 grant to move the patented omni-directional reflector to market.



“We have developed an omni-directional reflector (ODR) for LEDs that will accelerate the replacement of conventional lighting used for a multitude of applications, such as lighting in homes, businesses, museums, airports, and on streets,” said Fred Schubert, Wellfleet Senior Constellation Professor of the Future Chips Constellation at Rensselaer who is heading the research effort. “The advance has implications ranging from major energy savings to contributing to a better environment and improving health.”

New LED Technology


LEDs are made from semiconductor “chips,” the size of sand grains, covered with arrays of pencil-eraser size plastic bulbs. Increasingly being used in traffic signals, automotive lighting, and exit signs, LEDs have the potential to use far less electricity and last much longer than conventional fluorescent and incandescent bulbs. But current LEDs are not bright enough to replace most everyday uses of the standard light bulb.

“Only when the light generated is efficiently reflected inside the semiconductor can the brightness exceed that of standard lighting sources,” Schubert says. “With the ODR, which reflects light at nearly 100 percent—up to twice as much as previous reflectors—we now have an LED that could revolutionize today’s standard lighting.”

The ODR is a thin triple-layer coating that consists of a semiconductor, a dielectric material, and a silver layer. Reports of the new reflector were published in the May 31, 2004, issue of the journal of Applied Physics Letters and last October in the IEEE (Institute of Electrical and Electronics Engineers) journal of Electron Devices Letters. In addition to NSF funding, the researchers also have received $250,000 in the last two years from the Defense Advanced Research Projects Agency to develop the new reflector.

Next-Generation LEDs: Cutting Energy Costs and Potential Medical Applications
Next-generation LEDs are expected to become the widespread “green technology” of choice for lighting, Schubert says.

“With near ideal LEDs, our nation could cut electricity consumption for lighting in half,” Schubert says. “Lighting is the most common use of electrical energy, taking up about 25 percent of electrical energy consumption in the United States.”

Schubert also notes that LEDs are mercury-free, unlike even the newest energy-saving fluorescent bulbs. Mercury exposure can cause significant health problems in children and adults, according to National Institutes of Health.

In addition, an LED that emits higher-quality light has potential medical applications, such as alleviating sleep disorders, Schubert says. The circadian cycle, the 24-hour sleep-wake cycle in healthy humans, is controlled by the spectrum and intensity of light sources. Using the right light for the right time of day can enhance or hinder sleep.

For example, “tunable” light sources, such as LEDs, which emit longer wavelength light (red) that mimics the setting Sun could help those with insomnia sleep better. Individuals are not affected visually by the difference in “colored” light, but the body’s internal clock can sense the difference, Schubert says. Conventional illumination sources cannot provide the same benefit because of the lack of “tunability,” meaning their optical spectrum cannot be adjusted to emphasize various wavelengths.

Schubert, who won the 2000 Discover Magazine Award for his photon-recycling semiconductor LED invention, has helped to transform traffic signals and airport runway lighting through his numerous LED-based inventions. He holds appointments in the Department of Electrical, Computer, and Systems Engineering and in the Department of Physics, Applied Physics, and Astronomy at Rensselaer. The recently-completed Future Chips Constellation, in which he is a senior professor, focuses on innovations in materials and devices, in solid state and smart lighting, and extends to applications such as sensing, communications, and biotechnology.

| newswise
Further information:
http://www.rpi.edu

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>