Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ear-like System Could Clear Up Cellphone Conversations

23.07.2004


Background noise that interferes with cellphone conversations could be a thing of the past thanks to a dual microphone system developed at the University of Toronto.



“In typical environments there is background noise and reverberations that make it hard to carry on a cellphone conversation,” says lead researcher Professor Parham Aarabi of U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “This system employs two microphones that, just like the two human ears, focus on the speaker’s voice and filter out other noises.”

The system uses time-frequency filters to determine the speaker of interest’s location based on the length of time it takes for the most intense sound to arrive at the microphones. As the two microphones observe the speaker’s voice, a computer chip continuously decides which frequencies belong to the speaker and which ones to the extraneous noise. The interference is then “damaged” and the volume is scaled back.


“Other speech recognition systems only reduce the background noise, but this technology also deconstructs other conversations into a slight hum so they don’t confuse you,” says Aarabi, who holds the Canada Research Chair in Multi-Sensor Information Systems. “By using this approach we’ve been able to get 30 per cent gains in recognition accuracy over alternative state-of-the-art, multi-microphone speech recognition systems.”

While the dual microphone system is currently too bulky to fit into cellphones, Aarabi predicts that a miniaturized version is only about two years away. A customized chip that enhances voice recognition software in PCs is only months away. The eventual miniaturized version will be a pen-sized device with two or four microphones and with all the batteries and electronics contained inside. The research appears in a study published in the August issue of IEEE Transactions on Systems, Man, and Cybernetics Part B.

| newswise
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Satellite-based Laser Measurement Technology against Climate Change

17.01.2017 | Machine Engineering

Studying fundamental particles in materials

17.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>