Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ear-like System Could Clear Up Cellphone Conversations

23.07.2004


Background noise that interferes with cellphone conversations could be a thing of the past thanks to a dual microphone system developed at the University of Toronto.



“In typical environments there is background noise and reverberations that make it hard to carry on a cellphone conversation,” says lead researcher Professor Parham Aarabi of U of T’s Edward S. Rogers Sr. Department of Electrical and Computer Engineering. “This system employs two microphones that, just like the two human ears, focus on the speaker’s voice and filter out other noises.”

The system uses time-frequency filters to determine the speaker of interest’s location based on the length of time it takes for the most intense sound to arrive at the microphones. As the two microphones observe the speaker’s voice, a computer chip continuously decides which frequencies belong to the speaker and which ones to the extraneous noise. The interference is then “damaged” and the volume is scaled back.


“Other speech recognition systems only reduce the background noise, but this technology also deconstructs other conversations into a slight hum so they don’t confuse you,” says Aarabi, who holds the Canada Research Chair in Multi-Sensor Information Systems. “By using this approach we’ve been able to get 30 per cent gains in recognition accuracy over alternative state-of-the-art, multi-microphone speech recognition systems.”

While the dual microphone system is currently too bulky to fit into cellphones, Aarabi predicts that a miniaturized version is only about two years away. A customized chip that enhances voice recognition software in PCs is only months away. The eventual miniaturized version will be a pen-sized device with two or four microphones and with all the batteries and electronics contained inside. The research appears in a study published in the August issue of IEEE Transactions on Systems, Man, and Cybernetics Part B.

| newswise
Further information:
http://www.utoronto.ca

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>