Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A New Twist On Fiber Optics


Spiraling glass fibers provide new way to control behavior of light

By twisting fiber optic strands into helical shapes, researchers have created unique structures that can precisely filter, polarize or scatter light. Compatible with standard fiber optic lines, these hair-like structures may replace bulky components in sensors, gyroscopes and other devices.

While researchers are still probing the unusual properties of the new fibers, tests show the strands impart a chiral, or "handed," character to light by polarizing photons according to certain physical properties.

Victor Kopp of Chiral Photonics in Clifton, N.J., and his colleagues describe the new fibers in the July 2 issue of Science.

Several of these fibers, and their applications, are being developed in part with funds from the National Science Foundation (NSF) Small Business Innovation Research program.

In conventional optical fibers, light is transmitted from one end to the other through a round core housed within a concentric outer cladding. But, because a circular core does not develop handedness when twisted, the research team wound rectangular-core fibers to create a double helix.

When the team tested the twisted fiber, they discovered that some photons left the core and entered the cladding. Photons with the same handedness as the fiber entered the cladding whereas photons with handedness opposite that of the fiber remained in the core.

With only a relatively loose twist-roughly 100 microns to form a complete turn-photons with a handedness that coincides with the fiber’s twist scatter out of the core at a shallow angle and are trapped in the cladding. With a tighter twist, photons with the same handedness as the fiber scatter at a wider angle, allowing the photons to escape from the cladding into the surrounding space. Only light of a single polarization remains in the fiber (see animation). At the tightest twists, roughly one-millionth of a meter to complete a turn, photons with the same handedness as the structure are reflected backwards in the core.

Because the environment surrounding the fiber affects the wavelength of the light embedded in the cladding, "loosely" twisted fibers can serve as sensors for pressure, temperature, torque and chemical composition.

With moderately twisted fibers, researchers can manipulate the resulting polarized light in useful ways, leading to a range of applications such as gyroscopes for navigation systems, current meters for electric power stations, and chemical and materials analysis equipment.

For tightly wound fibers, the amount of twist determines the precise wavelength of the light remaining in the fiber, producing light that is ideal for filter and laser applications. Chiral Photonics is developing manufacturing processes for commercial production of the technology. Using a small filament oven, technicians soften the optical fibers while twisting them, which allows greater control of the process.

This research was funded both NSF and the National Institute of Standards and Technology Advanced Technology Program.

Comments from NSF:

"This technology could be one of the most significant recent advances in the field of polarization and wavelength control. Equally impressive is the innovative science that will be developed based on this new technology. This project should advance the current understanding in advanced fiber structures." - Winslow Sargeant, the NSF program officer who oversees the Chiral Photonics SBIR award.

"There is an enormous host of applications for which chiral fiber gratings could find markets. Fiber Bragg gratings (FBGs) are a well-established technology for transmitting data, but suffer from high cost due to the equipment and time required to craft them. Chiral fiber gratings can replace FBGs in some applications with the possible added advantage of low-cost production." - Winslow Sargeant

Comments from the researchers:

"We believe the creative process is only beginning as these photonic building blocks that add functionality into fiber are being introduced to the ingenuity of photonic designers and their applications." - Dan Neugroschl, President, Chiral Photonics.

"We have shown that chiral fibers with a wide range of twists can be created in a versatile continuous manufacturing process under computer control. These fibers are the physical structure in which different states of a light wave can be coupled to perform useful functions." - Azriel Genack, CTO, Chiral Photonics.

"These fibers are unique because light moving along the fiber core with a specific wavelength and polarization can either be coupled to a more slowly moving wave in the cladding surrounding the fiber core, or be scattered out of the fiber or be sent backwards within the core." - Victor Kopp, Director of R&D

Julie A. Smith | NSF
Further information:

More articles from Power and Electrical Engineering:

nachricht Prototype device for measuring graphene-based electromagnetic radiation created
28.10.2016 | Lomonosov Moscow State University

nachricht Steering a fusion plasma toward stability
28.10.2016 | American Physical Society

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>