Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A New Twist On Fiber Optics

02.07.2004


Spiraling glass fibers provide new way to control behavior of light

By twisting fiber optic strands into helical shapes, researchers have created unique structures that can precisely filter, polarize or scatter light. Compatible with standard fiber optic lines, these hair-like structures may replace bulky components in sensors, gyroscopes and other devices.

While researchers are still probing the unusual properties of the new fibers, tests show the strands impart a chiral, or "handed," character to light by polarizing photons according to certain physical properties.

Victor Kopp of Chiral Photonics in Clifton, N.J., and his colleagues describe the new fibers in the July 2 issue of Science.

Several of these fibers, and their applications, are being developed in part with funds from the National Science Foundation (NSF) Small Business Innovation Research program.

In conventional optical fibers, light is transmitted from one end to the other through a round core housed within a concentric outer cladding. But, because a circular core does not develop handedness when twisted, the research team wound rectangular-core fibers to create a double helix.

When the team tested the twisted fiber, they discovered that some photons left the core and entered the cladding. Photons with the same handedness as the fiber entered the cladding whereas photons with handedness opposite that of the fiber remained in the core.

With only a relatively loose twist-roughly 100 microns to form a complete turn-photons with a handedness that coincides with the fiber’s twist scatter out of the core at a shallow angle and are trapped in the cladding. With a tighter twist, photons with the same handedness as the fiber scatter at a wider angle, allowing the photons to escape from the cladding into the surrounding space. Only light of a single polarization remains in the fiber (see animation). At the tightest twists, roughly one-millionth of a meter to complete a turn, photons with the same handedness as the structure are reflected backwards in the core.

Because the environment surrounding the fiber affects the wavelength of the light embedded in the cladding, "loosely" twisted fibers can serve as sensors for pressure, temperature, torque and chemical composition.

With moderately twisted fibers, researchers can manipulate the resulting polarized light in useful ways, leading to a range of applications such as gyroscopes for navigation systems, current meters for electric power stations, and chemical and materials analysis equipment.

For tightly wound fibers, the amount of twist determines the precise wavelength of the light remaining in the fiber, producing light that is ideal for filter and laser applications. Chiral Photonics is developing manufacturing processes for commercial production of the technology. Using a small filament oven, technicians soften the optical fibers while twisting them, which allows greater control of the process.

This research was funded both NSF and the National Institute of Standards and Technology Advanced Technology Program.

Comments from NSF:

"This technology could be one of the most significant recent advances in the field of polarization and wavelength control. Equally impressive is the innovative science that will be developed based on this new technology. This project should advance the current understanding in advanced fiber structures." - Winslow Sargeant, the NSF program officer who oversees the Chiral Photonics SBIR award.

"There is an enormous host of applications for which chiral fiber gratings could find markets. Fiber Bragg gratings (FBGs) are a well-established technology for transmitting data, but suffer from high cost due to the equipment and time required to craft them. Chiral fiber gratings can replace FBGs in some applications with the possible added advantage of low-cost production." - Winslow Sargeant

Comments from the researchers:

"We believe the creative process is only beginning as these photonic building blocks that add functionality into fiber are being introduced to the ingenuity of photonic designers and their applications." - Dan Neugroschl, President, Chiral Photonics.

"We have shown that chiral fibers with a wide range of twists can be created in a versatile continuous manufacturing process under computer control. These fibers are the physical structure in which different states of a light wave can be coupled to perform useful functions." - Azriel Genack, CTO, Chiral Photonics.

"These fibers are unique because light moving along the fiber core with a specific wavelength and polarization can either be coupled to a more slowly moving wave in the cladding surrounding the fiber core, or be scattered out of the fiber or be sent backwards within the core." - Victor Kopp, Director of R&D

Julie A. Smith | NSF
Further information:
http://www.nsf.gov

More articles from Power and Electrical Engineering:

nachricht Fraunhofer Researchers Develop High-Pressure Sensors for Extreme Temperature
28.06.2017 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>