Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making the future with nanoelectronics: a strategy for Europe

30.06.2004


To become the world’s most competitive powerhouse, Europe must lead the transition of the micro-electronics sector to the next generation of nano-electronics, with co-ordinated public and private investments of at least €6 billion per year. This is the message from a report drawn up by CEOs of leading companies and research organisations and presented today to European Research Commissioner Philippe Busquin and Enterprise and Information Society Commissioner Erkki Liikanen. Smarter and smaller electronics at the nano-meter scale managing vast amounts of data are becoming key components for many applications, from household appliances and consumer goods to automotive transport, health care and security, and ultimately ambient intelligence. The “Vision 2020: Nano-electronics at the centre of change” will lead to the launch of the European Nano-electronics Initiative Advisory Council (ENIAC) to be chaired by STMicroelectronics’ President and CEO Pasquale Pistorio. This European public-private partnership will identify a strategic research agenda for nano-electronics in Europe and implement it.

“Nanoelectronics is a strategic sector for Europe, with a potential for creating a significant number of highly skilled jobs and boosting growth and competitiveness in most other industrial sectors,” Commissioner Liikanen said. Today’s strategic initiative is vital if Europe’s industry is to remain at the forefront of global developments.”

“Europe cannot afford to miss the next generation of electronic applications that will be for our future economy what oil is for today’s economy,” Research Commissioner Busquin said. “Leading the transition to nano-electronics is a challenge that requires our best researchers to work together and our public and private investors to profit from economies of scale. Smaller and more functional electronic components make complex electronics disappear and help people to be creative and fully participate in the knowledge society.”



From microelectronics to nanoelectronics

The overall value of the microelectronics industry is around €140 billion, with electronics at €800 billion. In 2002, funding for micro-electronics in the Asia-Pacific region reached 62% of total capital spending, whereas it amounted to only 8% in Europe. The components on an integrated circuit are now so small that they are no longer measured in micrometers but in nanometers.

ENIAC is one of the Technology Platforms which are intended to define a common research agenda and mobilise a critical mass of national and European public and private resources. Developing nanoelectronics requires an interdisciplinary approach, world-class research and production facilities, and greater co-ordination of research.

Key vision 2020 recommendations

To achieve leadership in this sector, Europe must develop:

  • a competitive supply chain,
  • a research infrastructure for visionary and industrially relevant research, strategic public-private partnerships to mobilise a critical mass of resources,
  • a favourable legal and financial environment,
  • a skilled research, design and production workforce resulting from a highly specialised educational system.

Fabio Fabbi | EU Commission
Further information:
http://europa.eu.int
http://www.cordis.lu/ist/eniac
http://www.cordis.lu/nanotechnology

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>