Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research Begun on New Type of Fuel Cell

29.06.2004


In the June 2004 issue of Mechanical Engineering, a publication of ASME, the magazine reports on a fuel cell that cleans domestic wastewater while producing electrical energy.



This new type of microbial fuel cell, which is in the early stages of research at Pennsylvania State University, takes the high concentration of organic matter found in wastewater and coverts it to energy. “Where a typical fuel cell runs on hydrogen, a microbial fuel cell relies in the anaerobic oxidation of organic matter – in this case, the wastewater – to produce electricity,” says Mechanical Engineering.

According to researchers, if all the energy in the wastewater produced by 100,000 people can be recovered, it has the potential to generate 2.3 megawatts of electricity, or enough energy to power 1,500 homes.


One of the fuel cells in Penn State’s research program generated enough electricity to power only a small fan. The goal of the research project, funded by the National Science Foundation, is to develop a fuel cell that can generate a steady 500 kilowatts of electricity, or enough electricity to power 300 homes.

The NSF estimates that the Unites States treats 33 billion gallons of domestic wastewater every year, at a cost of $25 billion. Much of that cost goes towards the energy needed to operate treatment-processing systems. According to Mechanical Engineering, the use of cheaper and more efficient microbial fuel cells could reduce the cost of wastewater treatment.

In addition to increasing the power production of the new fuel cell, the researchers are seeking ways to reduce production costs associated with materials and design configurations. The process may also offer solutions for creating more clean water for both developing and industrial nations. The research team expects to roll out an improved design in one to three years, according to Mechanical Engineering.

| newswise
Further information:
http://www.asme.org

More articles from Power and Electrical Engineering:

nachricht Improved stability of plastic light-emitting diodes
19.04.2018 | Max-Planck-Institut für Polymerforschung

nachricht Intelligent components for the power grid of the future
18.04.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>