Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineers visualize electric memory as it fades

02.06.2004


While the memory inside electronic devices may often be more reliable than that of humans, it, too, can worsen over time.

Now a team of scientists from the University of Wisconsin-Madison and Argonne National Laboratory may understand why. The results are published in the early online edition (May 23) of the journal Nature Materials.

Smart cards, buzzers inside watches and even ultrasound machines all take advantage of ferroelectrics, a family of materials that can retain information, as well as transform electrical pulses into auditory or optical signals, or vice versa.



"The neat thing about these materials is that they have built-in electronic memory that doesn’t require any power," explains Paul Evans, a UW-Madison assistant professor of materials science and engineering, and a co-author of the recent paper.

But there’s a problem preventing many of these materials from being used more widely in other technologies, including computers. As Evans says, "Eventually they quit working."

The ability of ferroelectrics to store information resides in their arrangement of atoms, with each structure holding a bit of information. This information changes every time the material receives a pulse of electricity, basically switching the arrangement of atoms.

However, each electric pulse - and corresponding change in structure - gradually diminishes the capability of these materials to store and retrieve information until they either forget the information or quit switching altogether.

"It could switch 10,000 or even millions of times and then stop working," says Evans.

Engineers call this problem fatigue. With little evidence for what happens to the structure of ferroelectrics as the material’s memory fatigues, Evans and his colleagues decided to look inside this material as its arrangement of atoms, controlled by electrical pulses, switched inside an operating device.

"We’d like to understand how it switches so we could build something that switches faster and lasts longer before it wears out," says Evans.

To create a detailed picture of how the atoms rearrange themselves inside an operating device during each electrical pulse, the researchers used the Advanced Photon Source - the country’s most brilliant source of X-rays for research, located at the Argonne National Laboratory - to measure changes in the location of atoms. By seeing how the atoms changed their positions, the researchers could determine how well the material switched, or remembered information.

"One advantage to working with X-rays is their ability to penetrate deep into materials, which is why they are so extensively used today in medical imaging," says Eric Isaacs, director of Argonne’s Center for Nanoscale Materials, and one of the paper’s co-authors. "Utilizing this property of X-rays, [we] were able to peer through layers of metal electrodes in order to study ferroelectric fatigue in a realistic operating device."

He adds that the very high brightness of the Advanced Photon Source allowed the researchers to focus X-rays to unprecedented small dimensions.

The X-rays showed that, as the researchers repeatedly pulsed the device, progressively larger areas of the device ceased working, suggesting that the atoms were switching structures less and less.

"After 50,000 switches, the atoms were stuck - they couldn’t switch anymore," says Evans, adding that a stronger electrical charge did put the atoms back in motion.

When the researchers used a higher voltage of electricity from the beginning, switching stopped 100 times later, as reported in the paper. And, in this instance, applying an even stronger pulse made no difference.

"With higher voltages, the material can’t switch because something has changed about the material itself," says Evans. "When you use bigger voltages, it’s not just the switching that stops working, but something even more fundamental."

Because previous researchers have not peeked inside working ferroelectric materials to understand their arrangement of atoms - key to the ability to recall information - the reasons why switching eventually stops had not been clearly identified.

"The electronic memory is stored in the structure of atoms, and that’s why it’s so important to see what the structure looks like," explains Evans. By looking inside these devices, he says engineers can begin to understand why the atoms stop switching and then manufacturers can start to design better devices.

With this promise, Evans asks, "Wouldn’t it be nice to have a computer that doesn’t forget what it’s doing when you turn it off?"

Other researchers involved in the work include Chang Beom Eom, Dong Min Kim and the paper’s first author, Dal-Hyun Do, from UW-Madison; and Eric Dufresne, from the University of Michigan.
###
- Emily Carlson (608) 262-9772, emilycarlson@wisc.edu


Emily Carlson | University of Wisconsin
Further information:
http://www.news.wisc.edu/releases/9863.html

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>