Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Engineers visualize electric memory as it fades


While the memory inside electronic devices may often be more reliable than that of humans, it, too, can worsen over time.

Now a team of scientists from the University of Wisconsin-Madison and Argonne National Laboratory may understand why. The results are published in the early online edition (May 23) of the journal Nature Materials.

Smart cards, buzzers inside watches and even ultrasound machines all take advantage of ferroelectrics, a family of materials that can retain information, as well as transform electrical pulses into auditory or optical signals, or vice versa.

"The neat thing about these materials is that they have built-in electronic memory that doesn’t require any power," explains Paul Evans, a UW-Madison assistant professor of materials science and engineering, and a co-author of the recent paper.

But there’s a problem preventing many of these materials from being used more widely in other technologies, including computers. As Evans says, "Eventually they quit working."

The ability of ferroelectrics to store information resides in their arrangement of atoms, with each structure holding a bit of information. This information changes every time the material receives a pulse of electricity, basically switching the arrangement of atoms.

However, each electric pulse - and corresponding change in structure - gradually diminishes the capability of these materials to store and retrieve information until they either forget the information or quit switching altogether.

"It could switch 10,000 or even millions of times and then stop working," says Evans.

Engineers call this problem fatigue. With little evidence for what happens to the structure of ferroelectrics as the material’s memory fatigues, Evans and his colleagues decided to look inside this material as its arrangement of atoms, controlled by electrical pulses, switched inside an operating device.

"We’d like to understand how it switches so we could build something that switches faster and lasts longer before it wears out," says Evans.

To create a detailed picture of how the atoms rearrange themselves inside an operating device during each electrical pulse, the researchers used the Advanced Photon Source - the country’s most brilliant source of X-rays for research, located at the Argonne National Laboratory - to measure changes in the location of atoms. By seeing how the atoms changed their positions, the researchers could determine how well the material switched, or remembered information.

"One advantage to working with X-rays is their ability to penetrate deep into materials, which is why they are so extensively used today in medical imaging," says Eric Isaacs, director of Argonne’s Center for Nanoscale Materials, and one of the paper’s co-authors. "Utilizing this property of X-rays, [we] were able to peer through layers of metal electrodes in order to study ferroelectric fatigue in a realistic operating device."

He adds that the very high brightness of the Advanced Photon Source allowed the researchers to focus X-rays to unprecedented small dimensions.

The X-rays showed that, as the researchers repeatedly pulsed the device, progressively larger areas of the device ceased working, suggesting that the atoms were switching structures less and less.

"After 50,000 switches, the atoms were stuck - they couldn’t switch anymore," says Evans, adding that a stronger electrical charge did put the atoms back in motion.

When the researchers used a higher voltage of electricity from the beginning, switching stopped 100 times later, as reported in the paper. And, in this instance, applying an even stronger pulse made no difference.

"With higher voltages, the material can’t switch because something has changed about the material itself," says Evans. "When you use bigger voltages, it’s not just the switching that stops working, but something even more fundamental."

Because previous researchers have not peeked inside working ferroelectric materials to understand their arrangement of atoms - key to the ability to recall information - the reasons why switching eventually stops had not been clearly identified.

"The electronic memory is stored in the structure of atoms, and that’s why it’s so important to see what the structure looks like," explains Evans. By looking inside these devices, he says engineers can begin to understand why the atoms stop switching and then manufacturers can start to design better devices.

With this promise, Evans asks, "Wouldn’t it be nice to have a computer that doesn’t forget what it’s doing when you turn it off?"

Other researchers involved in the work include Chang Beom Eom, Dong Min Kim and the paper’s first author, Dal-Hyun Do, from UW-Madison; and Eric Dufresne, from the University of Michigan.
- Emily Carlson (608) 262-9772,

Emily Carlson | University of Wisconsin
Further information:

More articles from Power and Electrical Engineering:

nachricht Neutrons pave the way to accelerated production of lithium-ion cells
20.03.2018 | Technische Universität München

nachricht Monocrystalline silicon thin film for cost-cutting solar cells with 10-times faster growth rate fabricated
16.03.2018 | Tokyo Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>