Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for fuels without contaminant components

26.05.2004


To convert a gaseous fuel into a clean liquid one is the target of the research project being undertaken by the School of Industrial Engineering and Telecommunications Engineers of Bilbao in the Basque Country. It involves, in the final analysis, obtaining fuels which do not have contaminant components, i.e. sulphur, nitrogen or aromatic components.



Participating in this project, financed by the MARCO programme of the European Union, are nine groups from different European countries, under the co-ordination of the School of Engineering. All of them are researching ways of obtaining clean fuels from natural gas.

The process basically consists of two stages: the first involves converting natural gas into synthesised gas, a mixture of carbon monoxide with carbon dioxide and hydrogen. In the second phase, this synthesised gas produces carbohydrates, from which petrol is subsequently produced.


The tasks corresponding to this first stage are being undertaken in a pilot plant at the University of the Basque Country (EHU/UPV). To this end, the EHU/UPV has a small reactor for such experiments. Fundamentally, work is being carried out to obtain catalysts for the conversion of the natural gas into that synthesised gas. These are necessary for the subsequent manufacture of hydrocarbons and what is being sought are catalysts where reactions can take place at lower temperatures, with greater criteria of selection, technically more efficient and economically more viable as well – in other words, reactions which are cheaper than those conventional catalysts. These catalysts, once prepared with these modifications and innovations and characterised, they have to be tested, i.e. they have to be made to react. Making the natural gas react with oxygen and also with water vapour in order to produce this synthesised gas, comparing how the different catalysts behave and selecting those showing the greatest advantages.

The process is very simple. The gas is introduced into the reactor, which is full of an inert material. The catalyst is introduced into the mix and the reaction initiated. This is the moment of transformation: the methane and oxygen converts into hydrogen and carbon monoxide. These gases go through a condenser, in which the water is drawn off and the gas is taken to the gas chromatograph.

In this machine the parts that have not reacted are analysed, as well as the yield (i.e. the level of conversion), etc. Aapart from testing the behaviour of various catalysts, researchers at the EHU/UPV experiment with the temperature, pressure, capacities, etc. All these parameters are controlled by computer.

Researchers have developed catalyst prototypes that notably enhance the behaviour of commercial products, as well as achieving the possibility of carrying out conversions at lower temperatures. Industrial application of the mentioned improvements considerably lower the production costs.

Researchers at the EHU/UPV are quite aware that natural gas reserves will one day dry up: This is why they are studying the possibilities of getting similar results from, for example, the gasification of the biomass. The research project is to finish in December of next year.

Nerea Pikabea | Basque research
Further information:
http://www.ehu.es
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=488&hizk=I

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>