Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for fuels without contaminant components

26.05.2004


To convert a gaseous fuel into a clean liquid one is the target of the research project being undertaken by the School of Industrial Engineering and Telecommunications Engineers of Bilbao in the Basque Country. It involves, in the final analysis, obtaining fuels which do not have contaminant components, i.e. sulphur, nitrogen or aromatic components.



Participating in this project, financed by the MARCO programme of the European Union, are nine groups from different European countries, under the co-ordination of the School of Engineering. All of them are researching ways of obtaining clean fuels from natural gas.

The process basically consists of two stages: the first involves converting natural gas into synthesised gas, a mixture of carbon monoxide with carbon dioxide and hydrogen. In the second phase, this synthesised gas produces carbohydrates, from which petrol is subsequently produced.


The tasks corresponding to this first stage are being undertaken in a pilot plant at the University of the Basque Country (EHU/UPV). To this end, the EHU/UPV has a small reactor for such experiments. Fundamentally, work is being carried out to obtain catalysts for the conversion of the natural gas into that synthesised gas. These are necessary for the subsequent manufacture of hydrocarbons and what is being sought are catalysts where reactions can take place at lower temperatures, with greater criteria of selection, technically more efficient and economically more viable as well – in other words, reactions which are cheaper than those conventional catalysts. These catalysts, once prepared with these modifications and innovations and characterised, they have to be tested, i.e. they have to be made to react. Making the natural gas react with oxygen and also with water vapour in order to produce this synthesised gas, comparing how the different catalysts behave and selecting those showing the greatest advantages.

The process is very simple. The gas is introduced into the reactor, which is full of an inert material. The catalyst is introduced into the mix and the reaction initiated. This is the moment of transformation: the methane and oxygen converts into hydrogen and carbon monoxide. These gases go through a condenser, in which the water is drawn off and the gas is taken to the gas chromatograph.

In this machine the parts that have not reacted are analysed, as well as the yield (i.e. the level of conversion), etc. Aapart from testing the behaviour of various catalysts, researchers at the EHU/UPV experiment with the temperature, pressure, capacities, etc. All these parameters are controlled by computer.

Researchers have developed catalyst prototypes that notably enhance the behaviour of commercial products, as well as achieving the possibility of carrying out conversions at lower temperatures. Industrial application of the mentioned improvements considerably lower the production costs.

Researchers at the EHU/UPV are quite aware that natural gas reserves will one day dry up: This is why they are studying the possibilities of getting similar results from, for example, the gasification of the biomass. The research project is to finish in December of next year.

Nerea Pikabea | Basque research
Further information:
http://www.ehu.es
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=488&hizk=I

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>