Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The search for fuels without contaminant components

26.05.2004


To convert a gaseous fuel into a clean liquid one is the target of the research project being undertaken by the School of Industrial Engineering and Telecommunications Engineers of Bilbao in the Basque Country. It involves, in the final analysis, obtaining fuels which do not have contaminant components, i.e. sulphur, nitrogen or aromatic components.



Participating in this project, financed by the MARCO programme of the European Union, are nine groups from different European countries, under the co-ordination of the School of Engineering. All of them are researching ways of obtaining clean fuels from natural gas.

The process basically consists of two stages: the first involves converting natural gas into synthesised gas, a mixture of carbon monoxide with carbon dioxide and hydrogen. In the second phase, this synthesised gas produces carbohydrates, from which petrol is subsequently produced.


The tasks corresponding to this first stage are being undertaken in a pilot plant at the University of the Basque Country (EHU/UPV). To this end, the EHU/UPV has a small reactor for such experiments. Fundamentally, work is being carried out to obtain catalysts for the conversion of the natural gas into that synthesised gas. These are necessary for the subsequent manufacture of hydrocarbons and what is being sought are catalysts where reactions can take place at lower temperatures, with greater criteria of selection, technically more efficient and economically more viable as well – in other words, reactions which are cheaper than those conventional catalysts. These catalysts, once prepared with these modifications and innovations and characterised, they have to be tested, i.e. they have to be made to react. Making the natural gas react with oxygen and also with water vapour in order to produce this synthesised gas, comparing how the different catalysts behave and selecting those showing the greatest advantages.

The process is very simple. The gas is introduced into the reactor, which is full of an inert material. The catalyst is introduced into the mix and the reaction initiated. This is the moment of transformation: the methane and oxygen converts into hydrogen and carbon monoxide. These gases go through a condenser, in which the water is drawn off and the gas is taken to the gas chromatograph.

In this machine the parts that have not reacted are analysed, as well as the yield (i.e. the level of conversion), etc. Aapart from testing the behaviour of various catalysts, researchers at the EHU/UPV experiment with the temperature, pressure, capacities, etc. All these parameters are controlled by computer.

Researchers have developed catalyst prototypes that notably enhance the behaviour of commercial products, as well as achieving the possibility of carrying out conversions at lower temperatures. Industrial application of the mentioned improvements considerably lower the production costs.

Researchers at the EHU/UPV are quite aware that natural gas reserves will one day dry up: This is why they are studying the possibilities of getting similar results from, for example, the gasification of the biomass. The research project is to finish in December of next year.

Nerea Pikabea | Basque research
Further information:
http://www.ehu.es
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=488&hizk=I

More articles from Power and Electrical Engineering:

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Did you know that IR heat plays a central role in the production of chocolates?
14.02.2017 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>