Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New research will cut cost of solar energy by half


The largest single research project into solar power ever funded by the UK research councils was launched this month and could help make the energy source much more widely used in Britain.

The University of Bath is among six universities and seven companies in the UK that began the £4.5 million project this month (April) to halve the cost of converting the sun’s rays to electricity using solar cells.

The four-year research project could make solar power a viable alternative to fossil fuels, supplies of which are expected dwindle in the future. Cutting the cost of solar energy will stimulate more use of it in Britain, for instance to supply electricity in buildings by putting solar panels on their roofs.

Up to now most solar cells have traditionally been made using single crystal silicon, which is produced in an expensive high temperature process. But the new project will develop new ’thin film’ solar cells, which, although less efficient as the existing single crystal cells, are potentially much cheaper to make.

The University of Bath’s Department of Chemistry has been given £500,000 of the grant to look at low cost ways of making the new cells from copper indium sulphide and copper indium gallium sulphide. New electroplating methods will allow cells to be put onto large area panels by immersing them in liquid rather than by using more expensive and less environmentally-friendly methods.

The project is funded by the Engineering and Physical Sciences Research Council and is entitled Photovoltaic Material for the 21st Century. It is the largest grant the EPSRC has made for solar energy research.

The other universities are: Durham, Wales, Northumbria, Southampton and Loughborough. The companies are: Crystalox, Mats UK, Millbrook Instruments, Epichem, Kurt J Lesker, Oxford Lasers and Gatan UK.

The project is part of the EPSRC’s "Supergen" initiative, a £25 million project to look at alternative energy sources such as the sea, wind and the sun, and also at more efficient ways of storing power.

Professor Laurence Peter, head of the Department of Chemistry at the University of Bath and leader of the solar cell research group, said: "The solar energy project will make an enormously important contribution to providing more environmentally-friendly power for the UK and the rest of the world.

"As existing supplies of oil and gas dwindle, so we need to find alternatives that will not damage the environment and solar energy is ideal for this, even in countries like Britain where the sun doesn’t always shine.

"The University of Bath is developing novel ways of making cheaper solar cells, and I’m pleased that we are playing such an important part in this project."

Tony Trueman | alfa
Further information:

More articles from Power and Electrical Engineering:

nachricht Solid progress in carbon capture
27.10.2016 | King Abdullah University of Science & Technology (KAUST)

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>