Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-speed nanotube transistors could lead to better cell phones, faster computers

28.04.2004


Scientists have demonstrated, for the first time, that transistors made from single-walled carbon nanotubes can operate at extremely fast microwave frequencies, opening up the potential for better cell phones and much faster computers, perhaps as much as 1,000 times faster.



The findings, reported in the April issue of Nano Letters, a peer-reviewed journal of the American Chemical Society, the world’s largest scientific society, add to mounting enthusiasm about nanotechnology’s revolutionary potential.

"Since the invention of nanotube transistors, there have been theoretical predictions that they can operate very fast," says Peter Burke, Ph.D., a professor of electrical engineering and computer science at the University of California, Irvine, and lead author of the paper. "Our work is the first to show that single-walled nanotube transistor devices can indeed function at very high speeds."


Burke and his colleagues built an electrical circuit with a carbon nanotube between two gold electrodes. When they varied the voltage, the circuit operated at a frequency of 2.6 gigahertz (GHz), which means electrical current could be switched on and off in about one billionth of a second. This is the first demonstration of a nanotube operating in the frequency range of microwaves — electromagnetic waves with faster frequencies than radio waves.

Although Burke’s group demonstrated that nanotube transistors could work in the GHz range, he believes that much faster speeds are possible. "I estimate that the theoretical speed limit for these nanotube transistors should be terahertz [1 THz=1,000 GHz], which is about 1,000 times faster than modern computer speeds." His team is currently doing related research on the theoretical prediction of the cutoff frequency, or so-called speed limit, for these transistors.

Every transistor has a cutoff frequency, which is the maximum speed at which it can operate. For silicon, the cutoff is about 100 GHz, but current circuits typically operate at much slower speeds, according to Burke. For example, some of today’s newest processor chips still operate below 5 GHz.

Nanotechnology is the science of the very small: a nanometer is one billionth of a meter, or about 1,000 times smaller than the width of a human hair. A nanotube is another form of carbon, like graphite or diamond, where the atoms are arranged like a rolled-up tube of chicken wire.

Electrons move without losing energy inside nanotubes, which makes them perfect candidates for connections in electrical devices. A semiconducting carbon nanotube can act as a transistor — the key component in all modern electronics — because it can be switched on and off.

High-speed nanotube transistors could be useful in a number of applications. "Theoretically, this can translate into very low noise microwave amplifiers that could increase the range in which cell phones operate," Burke says. A cell phone receives its radio signal at a very low strength, so a microwave amplifier is needed to boost the signal for further processing.

Nanotube transistors could also lead to very high quality microwave filters that can separate out many different phone conversations more efficiently than current filters, and at lower cost, according to Burke. "Right now, this one function requires a separate chip inside a cell phone," he says. If the filter could be integrated with the other processing parts, the entire radio system would be on one chip, saving power, space and cost.

This type of "integrated nanosystem" is a goal of Burke’s research. "Ultimately, we would like more sophisticated circuits on a single chip," he says. "Our nanotube transistor is on a silicon substrate, but there are no active silicon devices." If all the transistors and electrical connections on a chip were made of nanotubes or nanowires, there would be no silicon parts to slow things down.

Burke expects to have a prototype transistor available within two years. "We still need to demonstrate operation at room temperature, which we are working on in my lab now. Also, we need to show that we can achieve amplification," he says. "But these are both achievable goals given one or two years of work."

The Army Research Office, the Office of Naval Research, and the Defense Advanced Research Projects Agency provided funding for this research.

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org/

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>