Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Duke chemists describe new kind of ’nanotube’ transistor

30.03.2004


Duke University researchers exploring ways to build ultrasmall electronic devices out of atom-thick carbon cylinders have incorporated one of these "carbon nanotubes" into a new kind of field effect transistor. The Duke investigators also reported new insights into their previously published technique for growing nanotubes in straight structures as long as half an inch.



Duke assistant chemistry professor Jie Liu will report on these and other nanotube developments during three talks at a national meeting of the American Chemical Society to be held March 28-April 1 in Anaheim, Calif.

Field effect transistors, among the workhorse devices of microelectronics technology, are tiny switches in which the passage of electric current between a "source" and a "drain" is controlled by an electric field in a middle component called a "gate."


Carbon nanotubes -- so named because of their billionths-of-a-meter dimensions ("nano" means billionths) -- combine exceptional strength, minuscule size and flexible electronic properties. They can behave either like conducting metals or like semiconductors, depending on how carbon atoms are arranged on their walls. As a result, they offer great promise as components in electronic devices even smaller than those available today.

The Duke research group headed by Liu is among a number that have incorporated a semiconducting nanotube as a component in an experimental field effect transistor. The nanotube is grown on a surface of silicon dioxide with metal electrodes evaporated on the nanotube’s surface serving as the device’s electron source and drain. Meanwhile, a layer of silicon fabricated under the silicon dioxide serves as the transistor’s gate, also called a "back gate."

However, other groups have found that this back gate of silicon, which is "doped" with other chemicals to fine-tune its electronic properties, is poorly coupled with the rest of the device. The result is excess power demand. "To turn the device from off to on, you need five to ten volts," Liu said in an interview.

To address this shortcoming, teams at two other universities have found they can reduce the power demand to between 0.3 and 0.5 volts by adding an additional gate made of a tiny droplet of salty water.

"That’s an order of magnitude of difference," Liu said of what he termed a "water gate." But "the disadvantage is that water is a liquid. So we looked for a way of replacing this water droplet with something that has similar properties but is a solid."

In a new paper in the research journal Nanoletters, Liu, graduate students Chenguang Lu and Qiang Fu, and research associate Shaoming Huang describe substituting an electrically conducting polymer that has been developed for dry lithium battery technology.

This substitute compound, called lithium perchlorate/polyethylene oxide (PEO), "can achieve similarly good device performance and avoid the problem of using liquid in the device," the Duke authors wrote in their paper. This PEO "polymer gate" is placed directly over the carbon nanotube.

Liu’s team found the polymer gate’s electronic properties can also be more easily fine-tuned to control the direction of the electric current by doping the underlying nanotube with other small carbon-containing molecules.

Doping silicon-based semiconductors in that way requires fabricators to precisely incorporate chemicals into those materials’ internal crystal structures. "For a nanotube, you just coat it on the surface, which is a lot easier," Liu said.

Also at the Anaheim meeting, Liu presented an update on research his group reported in the Journal of the American Chemical Society in April 2003 on growing straight and exceptionally long nanotubes that can be potentially cut into smaller lengths for splicing into electronic nanoarrays.

That 2003 journal report described how quick heating the emerging nanotubes in a continuously flowing feeding gas of carbon monoxide and hydrogen to a temperature hot enough to melt glass made the tubes grow in unusually long and true alignment. "We now have a much better understanding of why this fast heating technology performs differently," Liu said in an interview before his 2004 presentation.

In previous methods of using this chemical vapor deposition (CVD) process to grow nanotubes, the tubes extend along a surface of silicon dioxide. In the process, they encounter "physical resistance caused by the friction of bumping into other surface features," he explained. "That stops the growth of the nanotubes."

But quick-heating in the flowing gas makes the incipient nanotube lift up slightly above the surface as it begins to grow, he said. The growing nanotube follows the direction of the gas and stays slightly suspended, thus avoiding interacting with surface that is rough at molecular dimensions. "It’s like flying a kite," he added.

Monte Basgall | EurekAlert!
Further information:
http://www.dukenews.duke.edu/

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>