Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright light yields unusual vibes

29.03.2004


By bombarding very thin slices of several copper/oxygen compounds, called cuprates, with very bright, short-lived pulses of light, Ivan Bozovic, a physicist at the U.S. Department of Energy’s Brookhaven National Laboratory, and his collaborators have discovered an unusual property of the materials: After absorbing the light energy, they emit it as long-lived sound waves, as opposed to heat energy. This result may open up a new field of study on cuprates -- materials already used in wireless communications and under investigation for other applications in the electronics industry.



As the light pulses strike each film, illuminating an area only about a thousandth of a millimeter across, they transfer their energy to the film’s atoms. In response, the atoms vibrate, and tiny sound wave "packets," called phonons, spread through the sample. Bozovic observes that, mysteriously, these emitted sound waves do not die out quickly, as they do with other materials. Instead, the atoms oscillate many times before dissipating the absorbed energy. "This is very unusual, as it seems that the atoms find it hard to convert these oscillations into ordinary thermal energy (heat)," said Bozovic.

Through further studies, Bozovic hopes to learn more about this phenomenon, the first step toward finding possible applications for it. For example, this work could contribute to the development of a phaser, a laser-like device that emits phonons instead of light. "Much more research needs to be done," Bozovic said. "We don’t know yet how this property might be useful. However, I have little doubt that the phaser would be a very useful scientific tool for a broad new class of experiments," Bozovic said.


Bozovic will present his work at 1:03 p.m. on Friday, March 26, in room 517A, during the "Excitation in Strongly Correlated Materials II" session. This research is funded by the Air Force Office of Scientific Research, the National Science Foundation, and a Laboratory Directed Research and Development grant from the U.S. Department of Energy’s Los Alamos National Laboratory, where part of the work was performed.


NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/).

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | EurekAlert!
Further information:
http://www.bnl.gov/newsroom
http://www.aps.org/meet/MAR04/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>