Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes with big possibilities

26.03.2004


A scientist at the U.S. Department of Energy’s Brookhaven National Laboratory, working with colleagues at the IBM T.J. Watson Research Center, has caused an individual carbon nanotube to emit light for the first time. This step in research on carbon nanotubes may help to materialize many of the proposed applications for carbon nanotubes, such as in electronics and photonics development.



The light emission is the result of a process called "electron-hole recombination." By running an electric current through a carbon nanotube -- a long, hollow cylindrical molecule that is only one and a half nanometers (a billionth of a meter) in diameter -- negatively charged electrons in the nanotube molecule combine with positively charged "holes," which are locations in the molecule where electrons are missing. When an electron fills a hole, it emits a photon -- a tiny burst of light.

"We produced infrared light by applying voltages to a specific type of nanotube such that many electrons and holes end up in the nanotube, where they combine. This makes the nanotube the world’s smallest electrically-controllable light emitter," said James Misewich, a materials scientist at Brookhaven. "It’s an exciting result, and my colleagues and I plan to continue studying the effect to determine the mechanisms behind it. For example, we hope to understand how to make the nanotubes emit other types of light, such as visible light, and how to increase the efficiency of the emission."


Carbon nanotubes do not yet have any mainstream practical applications, but researchers are investigating ways to use them in flat-panel displays, such as televisions and computer monitors, or as reinforcements in building materials, due to their exceptional mechanical strength. Misewich also suggested that, if additional research leads to an increased efficiency of nanotube light emission, the nanotubes could possibly be used in lighting applications.

Misewich will present his research in the "Optoelectronics in Nanoscale Devices" session on Thursday, March 25, at 8 a.m. in room 520F. The research is funded by the Department of Energy’s Office of Basic Energy Sciences within the Office of Science.


NOTE: This press release describes a talk being given by a scientist from the U.S. Department of Energy’s Brookhaven National Laboratory at the March 2004 meeting of the American Physical Society, taking place March 22-26 at the Palais de Congres, Montreal, Canada (http://www.aps.org/meet/MAR04/).

One of the ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE’s Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization. Visit Brookhaven Lab’s electronic newsroom for links, news archives, graphics, and more: http://www.bnl.gov/newsroom

Karen McNulty Walsh | BNL
Further information:
http://www.bnl.gov/bnlweb/pubaf/pr/2004/bnlpr032504.htm
http://www.aps.org/meet/MAR04/

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>