Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Europe at the forefront in research on solar, wave and geothermal energies

18.03.2004


Today at the “Solar platform” test site in Almeria (Spain) the European Commission presented the state of play on its research programmes in alternative energy sources, including solar thermal, wave and geothermal energy. World energy consumption will double over the next 50 years, with Europe currently depending heavily on foreign energy sources. Currently, 41% of EU energy consumption is based on oil, followed by gas (23%), coal (15%), nuclear (15%) and only 6% is based on renewable energies. The threat of global climate change and the warnings about energy security will force Europe to drastically change and diversify its sources of supply, relying more and more on renewable energy. The EU has set out a strategy to double the share of renewable energy, from the present 6% to 12% by 2010. Within its 6th Research Framework Programme (FP6 2003-2006) the EU will devote €810 million to renewable energy sources. The projects showcased today include “European Hot Dry Rock” using geothermal energy, “Wave Dragon” using wave energy, and “Sol Air” using solar thermal.



“Although fossil fuels will stay with us for a long time, we have to develop alternative energy sources to make Europe’s economic growth really sustainable,” said European Research Commissioner Philippe Busquin. “Wave, geothermal and solar energy are promising but still represent a relatively small share of the overall energy balance. More research is needed to make them really cost-effective and encourage their take up alongside other alternative energy sources. Projects presented today by the Commission show this is feasible. More research coupled with other incentives, such as tax breaks and better access to capital, can boost their use and make Europe not only cleaner, but also more competitive.”

Many alternatives for Europe


So far, the EU conducts research and technological development on several renewable energy technologies such as wind, biomass, solar photovoltaic, concentrated solar thermal, ocean (wave, tide and osmosis) and geothermal. Today’s briefing shows Europe’s leadership in developing and implementing ground-breaking research and technology transfer in geothermal, concentrated solar thermal and wave energies.

Geothermal energy

Geothermal energy makes use of the natural heat of the earth, and is therefore available to consumers at any time of the day or night, independent of weather and climate conditions. In Europe, about 95,000 dwellings are heated by geothermal energy. It has the capacity to generate about 1000 MW of electric power and has already been installed in Europe. The EU project “European Hot Dry Rock” will be presented at the briefing.

The project (with partners from France, Germany, Italy and Switzerland), utilizes widened natural fracture systems and injects water at high pressure that is then heated and returned to the earth’s surface via several production wells. A heat exchanger transfers energy to a second circuit that drives a turbine generator to produce electricity. Europe is currently the world leader in this technology. The European test site is located in Soultz-sous-Forêt (FR).

For further information please visit http://www.soultz.net

Ocean energy

Ocean energy makes use of tidal effects or waves to produce energy. The European teams developing tidal current devices, which extract energy from the sea current generated by tides, are world leaders. No other developers have shown progress beyond the theoretical drawing board. Two systems, producing 300kWe each, are currently being tested. The teams developing wave energy devices, which convert the movement of waves into useable energy, are also leading the world in this area.

The EU research project Wave Dragon, to be presented at the briefing, is the world’s first offshore wave energy converter producing power for the grid in Denmark. The project team includes partners from Austria, Denmark, Germany, Ireland, Sweden, & the UK. Moored in water, the 237 tonne Wave Dragon recuperates energy that is generated by ‘overtopping’ waves. The water is initially stored in a reservoir and then passed through turbines which produce electricity. This prototype corresponds is a quarter the size of the full system. In comparison with traditional hydroelectric power stations, this new technology is competitive. Plans to build and deploy power production units elsewhere in the EU are already underway. For further information please visit http://www.wavedragon.net

Concentrated solar thermal energy

Concentrated solar thermal energy utilises optical systems to use direct sunlight to generate heat. European consortia are taking the lead by developing new components and new concepts: the Sol Air Project uses mirrors to redirect the sun’s energy towards a ceramic receptor that heats air which is, in turn, used to heat water. The vapour of the water then activates turbines which produce electricity.

European industry is now the owner of this particular technology, which is unique worldwide. In the future, the size of solar power plants using central tower technology may vary from 10MWe to 100MWe, depending on the demand and on the land available. The potential of this new technology is great and participants at the briefing will be shown what is effectively an active ‘solar power station’. The project team includes partners from Spain, Germany, Greece and Denmark.

For further information please visit:

Solar Platform: http://www.psa.es/webeng/index.html
See also: http://www.solucar.es/english/index.html

Pedro Ramos | alfa
Further information:
http://www.psa.es/webeng/index.html
http://www.wavedragon.net
http://www.soultz.net

More articles from Power and Electrical Engineering:

nachricht Fraunhofer ISE Supports Market Development of Solar Thermal Power Plants in the MENA Region
21.02.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>