Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-performance, single-crystal plastic transistors reveal hidden behavior

12.03.2004


Printing circuits on sheets of plastic may offer a low-cost technique for manufacturing thin-film transistors for flexible displays, but maximizing the performance of such devices will require a detailed, fundamental understanding of how charge flows through organic semiconductors.



Now, an unusual way of fabricating single-crystal organic transistors has allowed scientists to probe charge transport within the crystals and to observe a strong anisotropy of the charge transport mobility within the crystal plane never before seen.

"We construct transistors simply by laminating a piece of silicone rubber that supports electrodes and dielectric layers for the transistor – an element that we refer to as a transistor stamp – against the surface of a single crystal," said John A. Rogers, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign and corresponding author of a paper to appear in the March 12 issue of the journal Science.


"This method separates the synthesis of the crystal from the fabrication of the other elements needed for the transistors," Rogers said. "It thereby eliminates exposure of the fragile surface of the organic crystals to the hazards of conventional processing."

The fabrication technique – developed by researchers from Illinois, Rutgers University and Bell Laboratories, Lucent Technologies – not only provides a way to study the physics at the heart of charge transport in these unusual materials, it also has resulted in the highest mobility recorded in an organic semiconductor.

The use of transistor stamps promises to open up the field of basic study of organic semiconductors by allowing devices to be fabricated from pristine organic crystal samples that remain untouched by conventional chemical or mechanical processing.

To build their high-performance organic transistors, the researchers start with a simple rubber substrate, upon which they deposit gold films and thin rubber layers to create the gate dielectric and the source, drain and gate electrodes. A high-quality rubrene crystal – grown by the Rutgers group – is then bonded to the substrate to complete assembly. The bonding is performed by a lamination process carried out in ambient conditions without pressure or adhesives.

"While this assembly process could be performed commercially to produce complex circuits, we really designed it to get at the physics," Rogers said.
"Understanding the fundamental behavior of charge transport in these transistors will help us make better devices for the wide range of electronic applications that are now emerging for these classes of materials."

As charges flow through conventional thin-film polycrystalline materials, they encounter boundaries between the crystals that disrupt their movement. By studying single crystals, Rogers and his colleagues can eliminate the effects of these grain boundaries and examine the intrinsic transport properties of the crystalline material itself.

"The mobility we measured in these single-crystal devices was about 50 to 100 times larger than in thin-film plastic transistors," Rogers said. "This result suggests that scattering at grain boundaries is significantly reducing the performance of normal transistors, and points us toward a way of improving these devices."

Because the bond between stamp and crystal is not permanent, the researchers also can remove the crystal, rotate it, and reattach it to the substrate. Repositioning the crystal allows the scientists to explore the dependence of the mobility on the orientation of the transistor channel relative to the crystal axes.

"We found a huge dependence upon transport direction in the currents that we measured," Rogers said. "This anisotropy was unexpected, and indicates that transistor performance depends strongly on how the electrodes are oriented relative to the packing of molecules in the crystal."

The researchers’ findings have clear device implications. In addition to removing grain boundaries, Rogers said, "if you could preferentially order the crystals in these thin films, that would benefit device performance as well."

Collaborators included Vitaly Podzorov and Michael E. Gershenson at Rutgers, Vikram C. Sundar, Jana Zaumseil, Robert L. Willett and Takao Someya at Bell Labs, and Etienne Menard at Illinois.

The National Science Foundation and the U.S. Department of Energy funded the work.

James E. Kloeppel | UIUC
Further information:
http://www.news.uiuc.edu/news/04/0311crystal.html

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>