Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers discover way to grow silicon nanowires

23.02.2004


OGI School of Science & Technology Research is one of a kind in Northwest



Oregon Health & Science University researchers have discovered a new way to accurately grow silicon nanowires on an electrode for use in fabricating transistors. A portion of these findings will be published in the Feb. 23 issue of Applied Physics Letter. The discovery has important implications for semiconductor research and may one day help engineers build faster computer chips.

A research group led by Raj Solanki, Ph.D., professor of electrical engineering professor in OHSU’s OGI School of Science & Engineering, recently demonstrated it is possible to grow silicon nanowires exactly where you want them on an electrode using electrical fields. Solanki’s team also can grow silicon-based nanowires in the exact direction necessary to fabricate electronic devices.


The researchers now are exploring electrical properties of the silicon nanowires. "Now that we know we can grow silicon nanowires in a precise location and in a specific direction, we want to know what happens to the nanowire when it contacts the metal on the electrode," said Solanki. "We also are studying how any kind of coating or contamination on the nanowire surface affects the passage of charges through it.

"These kinds of factors determine the performance of nanoelectronic devices, so we need to thoroughly understand and perfect this technological advancement before any devices with silicon and silicon-based nanowires can be mass produced," he said. "In addition, a better understanding of the effect of contamination on the nanowire can lead to development of very sensitive sensors for a wide range of applications, such as environmental pollution to bio-toxins."

Solanki’s is the only lab in the Northwest studying silicon nanowires. His research is funded by Intel Corporation and supported by Sharp Laboratories and FEI Corporation.

Oregon has high hopes for nanotechnologies. In December 2003 President Bush signed into law the 21st Century Nanotechnology Research and Development Act. Sponsored by Oregon Sen. Ron Wyden, the act authorizes $3.7 billion over four years for nanotech research and development, beginning in 2005.

During the past 40 years, computer technology has undergone a revolution, driven by the miniaturization of the silicon transistor. An increase in the number of transistors (the fundamental component of most active electronic circuits) per chip has led to an increase in computer power and a decrease in manufacturing and retail costs.

The trend of doubling the number of transistors on a chip about every 18 months (Moore’s Law) was predicted by Intel’s Gordon Moore in 1965 and has held fairly true. But as device dimensions rapidly approach the nanometer (one billionth of a meter) scale, the traditional electrical engineering methods and materials are being pushed to their physical limits, and most experts now believe Moore’s law cannot continue beyond the 2010 to 2015 time frame.

"A completely new approach needs to be developed to go beyond the current limit," noted Solanki. "One possible solution is to develop electronic devices that incorporate silicon nanowires or carbon nanotubes as active components operating under physics laws of quantum mechanics."

Silicon nanowires are typically between 5 and 20 nanometers in diameter (about 1,000 times smaller than a human hair) and can be up to several micrometers (one micrometer equals one thousandth of a millimeter or one millionth of a meter) long. On photos taken via electron microscope, the silicon nanowires resemble skinny needles.

Unlike semiconductor silicon nanowires, carbon nanotubes can be either semiconductor or metallic, and are difficult to dope -- the process of deliberately introducing impurities to change electrical behavior. For those reasons, the OGI team is focusing on silicon nanowires, which also would make it easier for the microelectronic industry to adopt this technology.

Research at other institutions involves growing nanowires or nanotubes in a chamber separate from the silicon integrated circuits, then forming a liquid suspension and flowing it over silicon wafers that have prefabricated electrodes. Some of the nanowires or nanotubes grown in this way will settle between desired electrodes, which are then fabricated into devices such as transistors. This method uses only a small fraction of the nanowires or nanotubes and is time-consuming and expensive for mass production, noted Solanki.

"Growing silicon nanowires in a specific location in whatever direction you desire, which we have done, is much more practical for gigascale integration -- putting a billion transistors on a chip -- in the long term," said Solanki.

Solanki grows his silicon nanowires in a quartz reactor using a technique developed decades ago by Bell Labs called vapor-liquid-solid deposition. "The addition of the electrical fields is what’s new," said Solanki. "We have also grown nickel silicide conducting nanowires, which will be useful for contacting the silicon semiconductor nanowires."

Solanki has been on the OGI faculty since 1986. His current work on nanowires is an extension of OGI’s research on atomic layer deposition. OGI was one of the first universities to investigate atomic layer deposition for growing extremely high-quality thin films, one atomic layer at a time. Such a technique is ideal for the growth of nanoscale films.

Besides growing ultra-thin films for fabricating nanowire devices, Solanki and his team at OGI (John Freeouf, Ph.D, and John Carruthers, Ph.D.) recently have demonstrated that atomic layer deposition can be used to grow semiconductor heterostructure nanowires consisting of very thin alternating layers of two materials, which has potential for optoelectronics applications.

Atomic layer deposition recently has been recognized by the microelectronic industry as the technology that will be required for fabrication of nanoscale electronic devices. The OGI research team also collaborates with Portland State University scientists Shankar Rananavare, Ph.D., Jun Jiao, Ph.D., and Rolf Konenkamp, Ph.D.

OGI and OHSU expect to play a major role in bringing the capabilities of nanostructured devices into the electronics and biomedical industries through a commitment to applied research and educational programs. For more information about silicon nanowires or electrical engineering at the OGI School of Science & Engineering, visit http://cse.ogi.edu/edu.


The OGI School of Science & Engineering (formerly the Oregon Graduate Institute of Science & Technology) became one of four schools of Oregon Health & Science University in 2001.

Note: . To see a video clip, go to http://www.ogi.edu/about/videos/nanotechnology.wmv


Contact: Sydney Clevenger; 503-748-1546; clevenge@ohsu.edu
Mike MacRae, 503-748-1042; macraem@ohsu.edu

Sydney Clevenger | EurekAlert!
Further information:
http://cse.ogi.edu/edu
http://www.ogi.edu/about/videos/nanotechnology.wmv

More articles from Power and Electrical Engineering:

nachricht Researchers take next step toward fusion energy
16.11.2017 | Texas A&M University

nachricht Desert solar to fuel centuries of air travel
16.11.2017 | SolarPACES

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

From Hannover around the world and to the Mars: LZH delivers laser for ExoMars 2020

21.11.2017 | Physics and Astronomy

Borophene shines alone as 2-D plasmonic material

21.11.2017 | Materials Sciences

Penn study identifies new malaria parasites in wild bonobos

21.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>