Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell-developed tools to guide and switch light could lead to photonic microchips and practical home fiber-optic lines

16.02.2004


A Cornell University researcher is developing techniques for making photonic microchips -- in which streams of electrons are replaced by beams of light -- including ways to guide and bend light in air or a vacuum, to switch a beam of light on and off and to connect nanophotonic chips to optical fiber.



Michal Lipson, an assistant professor at Cornell, in Ithaca, N.Y., described recent research by the Nanophotonics Group in Cornell’s School of Electrical and Computer Engineering at the annual meeting of the American Association for the Advancement of Science (AAAS) in Seattle on Sunday, Feb. 15. Her talk was part of a symposium on "21st Century Photonics."

Lipson suggested that one of the first applications of nanophotonic circuits might be as routers and repeaters for fiber-optic communication systems. Such technology, she added, could speed the day when home use of fiber-optic lines becomes practical.


Researchers already have built nanoscale photonic devices in which wires are replaced by square waveguides that confine light by total internal reflection. This works only in materials with a high index of refraction, such as silicon, where there is a loss of light intensity and sometimes distortion of pulses. Lipson described a way to guide and bend light in low-index materials, including air or a vacuum. "In addition to reducing losses, this opens the door to using a wide variety of low-index materials, including polymers, which have interesting optical properties," Lipson said.

Using equipment at the National Science Foundation-supported Cornell Nanoscale Facility, Lipson’s group has manufactured waveguides consisting of two parallel strips of a material with a high refractive index placed about 50 to 200 nanometers apart, with a slot containing a material of much lower refractive index. (A nanometer is about the width of three silicon atoms.) In some

devices the walls are made of silicon with an air gap, and others have silicon dioxide walls with a silicon gap. In both cases, the index of refraction of the medium in the gap is much lower than that of the wall, up to a ratio of about four to one.



When a wavefront crosses two materials of very different refractive indices and the low-index space is very narrow in proportion to the wavelength, nearly all of the light is confined in the "slot waveguide." Theory predicts that straight slots will have virtually no loss of light, and smooth curves will have only a small loss. This has been verified by experiments, Lipson reported.

Slot waveguides can be used to make ring resonators, already familiar to nanophotonics researchers. When a circular waveguide is placed very close to a straight one, some of the light can jump from the straight to the circular waveguide, depending on its wavelength. "In this way we can choose the wavelength we want to transmit," Lipson said. In fiber-optic communications, signals often are multiplexed, with several different wavelengths traveling together in the same fiber, each wavelength carrying a different signal. Ring resonators can be used as filters to separate these signals, she suggested.

Like the transistor switches in conventional electronic chips, light-beam switches would be the basic components of photonic computers. Lipson’s group has made switches in which light is passed in a straight line through a cavity with reflectors at each end, causing the light to bounce back and forth many times before passing through. The refractive index of the cavity is varied by applying an electric field; because of the repeated reflections, the light remains in the waveguide long enough to be affected by this small change. Lipson is working on devices in which the same effect is induced directly by another beam of light.

Connecting photonic chips to optical fibers can be a challenge because the typical fiber is vastly larger than the waveguide. It’s like connecting a garden hose to a hypodermic needle. Most researchers have used waveguides that taper from large to small, but the tapers typically have to be very long and introduce losses. Instead, Lipson’s group has made waveguides that narrow almost to a point. When light passes through the point, the waveform is deformed as if it were passing through a lens, spreading out to match the larger fiber. Conversely, the "lens" collects light from the fiber and focuses it into the waveguide. Lipson calls this coupling device "optical solder." Based on experiments at Cornell, the device could couple 200-nanometer waveguides to 5-micron fibers with 95 per cent efficiency, she reported. It can also be used to couple waveguides of different dimensions.

The method of coupling nanoscale waveguides to optical fiber is described in a paper, "Nano-taper for Compact Mode Conversion," published in Optics Letters ( August 2003). Slot waveguides are described in "Guiding and Confining Light in Void Nanostructures," accepted for publication in Optics Letters . Some of the work has been done in collaboration with researchers working under Alexander Gaeta, Cornell associate professor of applied and engineering physics. The Cornell nanophotonics group web site is http://nanophotonics.ece.cornell.edu/ .

Bill Steele | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Lipson.ws.html
http://nanophotonics.ece.cornell.edu/

More articles from Power and Electrical Engineering:

nachricht Trojan Transit Rolling Out
27.03.2015 | University of Arkansas at Little Rock

nachricht Ultra-Thin Silicon Films Create Vibrant Optical Colors
25.03.2015 | University of Alabama Huntsville

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

Two Most Destructive Termite Species Forming Superswarms in South Florida

27.03.2015 | Agricultural and Forestry Science

ORNL-Led Team Demonstrates Desalination with Nanoporous Graphene Membrane

27.03.2015 | Materials Sciences

Coorong Fish Hedge Their Bets for Survival

27.03.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>