Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cornell-developed tools to guide and switch light could lead to photonic microchips and practical home fiber-optic lines

16.02.2004


A Cornell University researcher is developing techniques for making photonic microchips -- in which streams of electrons are replaced by beams of light -- including ways to guide and bend light in air or a vacuum, to switch a beam of light on and off and to connect nanophotonic chips to optical fiber.



Michal Lipson, an assistant professor at Cornell, in Ithaca, N.Y., described recent research by the Nanophotonics Group in Cornell’s School of Electrical and Computer Engineering at the annual meeting of the American Association for the Advancement of Science (AAAS) in Seattle on Sunday, Feb. 15. Her talk was part of a symposium on "21st Century Photonics."

Lipson suggested that one of the first applications of nanophotonic circuits might be as routers and repeaters for fiber-optic communication systems. Such technology, she added, could speed the day when home use of fiber-optic lines becomes practical.


Researchers already have built nanoscale photonic devices in which wires are replaced by square waveguides that confine light by total internal reflection. This works only in materials with a high index of refraction, such as silicon, where there is a loss of light intensity and sometimes distortion of pulses. Lipson described a way to guide and bend light in low-index materials, including air or a vacuum. "In addition to reducing losses, this opens the door to using a wide variety of low-index materials, including polymers, which have interesting optical properties," Lipson said.

Using equipment at the National Science Foundation-supported Cornell Nanoscale Facility, Lipson’s group has manufactured waveguides consisting of two parallel strips of a material with a high refractive index placed about 50 to 200 nanometers apart, with a slot containing a material of much lower refractive index. (A nanometer is about the width of three silicon atoms.) In some

devices the walls are made of silicon with an air gap, and others have silicon dioxide walls with a silicon gap. In both cases, the index of refraction of the medium in the gap is much lower than that of the wall, up to a ratio of about four to one.



When a wavefront crosses two materials of very different refractive indices and the low-index space is very narrow in proportion to the wavelength, nearly all of the light is confined in the "slot waveguide." Theory predicts that straight slots will have virtually no loss of light, and smooth curves will have only a small loss. This has been verified by experiments, Lipson reported.

Slot waveguides can be used to make ring resonators, already familiar to nanophotonics researchers. When a circular waveguide is placed very close to a straight one, some of the light can jump from the straight to the circular waveguide, depending on its wavelength. "In this way we can choose the wavelength we want to transmit," Lipson said. In fiber-optic communications, signals often are multiplexed, with several different wavelengths traveling together in the same fiber, each wavelength carrying a different signal. Ring resonators can be used as filters to separate these signals, she suggested.

Like the transistor switches in conventional electronic chips, light-beam switches would be the basic components of photonic computers. Lipson’s group has made switches in which light is passed in a straight line through a cavity with reflectors at each end, causing the light to bounce back and forth many times before passing through. The refractive index of the cavity is varied by applying an electric field; because of the repeated reflections, the light remains in the waveguide long enough to be affected by this small change. Lipson is working on devices in which the same effect is induced directly by another beam of light.

Connecting photonic chips to optical fibers can be a challenge because the typical fiber is vastly larger than the waveguide. It’s like connecting a garden hose to a hypodermic needle. Most researchers have used waveguides that taper from large to small, but the tapers typically have to be very long and introduce losses. Instead, Lipson’s group has made waveguides that narrow almost to a point. When light passes through the point, the waveform is deformed as if it were passing through a lens, spreading out to match the larger fiber. Conversely, the "lens" collects light from the fiber and focuses it into the waveguide. Lipson calls this coupling device "optical solder." Based on experiments at Cornell, the device could couple 200-nanometer waveguides to 5-micron fibers with 95 per cent efficiency, she reported. It can also be used to couple waveguides of different dimensions.

The method of coupling nanoscale waveguides to optical fiber is described in a paper, "Nano-taper for Compact Mode Conversion," published in Optics Letters ( August 2003). Slot waveguides are described in "Guiding and Confining Light in Void Nanostructures," accepted for publication in Optics Letters . Some of the work has been done in collaboration with researchers working under Alexander Gaeta, Cornell associate professor of applied and engineering physics. The Cornell nanophotonics group web site is http://nanophotonics.ece.cornell.edu/ .

Bill Steele | Cornell News
Further information:
http://www.news.cornell.edu/releases/Feb04/AAAS.Lipson.ws.html
http://nanophotonics.ece.cornell.edu/

More articles from Power and Electrical Engineering:

nachricht Transforming waste heat directly into electricity
03.05.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Did you know that Heraeus PID lamps have been used in the measurement of air quality at the London airport?
02.05.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

Motorcycle right behind the racing cyclist can improve time in Giro prologue

04.05.2016 | Physics and Astronomy

Scientists challenge conventional wisdom to improve predictions of bootstrap current

04.05.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>