Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New reactor puts hydrogen from renewable fuels within reach

13.02.2004


The first reactor capable of producing hydrogen from a renewable fuel source--ethanol--efficiently enough to hold economic potential has been invented by University of Minnesota engineers. When coupled with a hydrogen fuel cell, the unit--small enough to hold in your hand--could generate one kilowatt of power, almost enough to supply an average home, the researchers said. The technology is poised to remove the major stumbling block to the "hydrogen economy": no free hydrogen exists, except what is made at high cost from fossil fuels. The work will be published in the Feb. 13 issue of Science.



The researchers see an early use for their invention in remote areas, where the installation of new power lines is not feasible. People could buy ethanol and use it to power small hydrogen fuel cells in their basements. The process could also be extended to biodiesel fuels, the researchers said. Its benefits include reducing dependence on imported fuels, reducing carbon dioxide emissions (because the carbon dioxide produced by the reaction is stored in the next year’s corn crop) and boosting rural economies.

Hydrogen is now produced exclusively by a process called steam reforming, which requires very high temperatures and large furnaces--in other words, a huge input of energy. It’s unsuitable for any application except large-scale refineries, said Lanny Schmidt, Regents Professor of Chemical Engineering, who led the effort. Working with him were scientist Gregg Deluga, first author of the Science paper, and graduate student James Salge. All three are in the university’s department of chemical engineering and materials science.


"The hydrogen economy means cars and electricity powered by hydrogen," said Schmidt. "But hydrogen is hard to come by. You can’t pipe it long distances. There are a few hydrogen fueling stations, but they strip hydrogen from methane--natural gas--on site. It’s expensive, and because it uses fossil fuels, it increases carbon dioxide emissions, so this is only a short-term solution until renewable hydrogen is available."

Ethanol is easy to transport and relatively nontoxic. It is already being produced from corn and used in car engines. But if it were used instead to produce hydrogen for a fuel cell, the whole process would be nearly three times as efficient. That is, a bushel of corn would yield three times as much power if its energy were channeled into hydrogen fuel cells rather than burned along with gasoline.

"We can potentially capture 50 percent of the energy stored in sugar [in corn], whereas converting the sugar to ethanol and burning the ethanol in a car would harvest only 20 percent of the energy in sugar," said Schmidt. "Ethanol in car engines is burned with 20 percent efficiency, but if you used ethanol to make hydrogen for a fuel cell, you would get 60 percent efficiency."

The difference, Deluga explained, is due in large part to the need to remove all the water from ethanol before it can be put in an automobile gas tank--and the last drops of water are the hardest to remove. But the new process doesn’t require pure ethanol; in fact, it strips hydrogen from both ethanol and water, yielding a hydrogen bonus.

The invention rests on two innovations: a catalyst based on the metals rhodium and ceria, and an automotive fuel injector that vaporizes and mixes the ethanol-water fuel. The vaporized fuel mixture is injected into a tube that contains a porous plug made from rhodium and ceria. The fuel mixture passes through the plug and emerges as a mixture of hydrogen, carbon dioxide and minor products. The reaction takes only 50 milliseconds and eliminates the flames and soot that commonly accompany ethanol combustion.

In a typical ethanol-water fuel mixture, one could ideally get five molecules of hydrogen for each molecule of ethanol. Reacting ethanol alone would yield three hydrogen molecules. So far, the Schmidt team has harvested four hydrogen molecules per ethanol molecule.

"We’re confident we can improve this technology to increase the yield of hydrogen and use it to power a workable fuel cell," said Salge.


The work was supported by the University of Minnesota’s Initiative on Renewable Energy and the Environment, the National Science Foundation and the U.S. Department of Energy.

Embargoed by Science until 2 p.m. Eastern time (1 p.m. Central) Thursday, Feb. 12. For a copy of the paper, call 202-326-6440 or e-mail scipak@aaas.org.

Contacts:
Lanny Schmidt, 612-625-9391
Gregg Deluga, 612-625-6083
James Salge, 612-625-6073
Deane Morrison, University News Service, 612-624-2346 (Feb. 9-10 and after Feb. 15)
Patty Mattern, University News Service, 612-624-0214 (Feb. 11-15)

Deane Morrison | EurekAlert!
Further information:
http://www.umn.edu/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>