Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructured sensors for the United States’ company NanoSonic

14.01.2004


A research team from the Department of Electric and Electronic Engineering at the Public University of Navarre has designed nanostructured optical sensors and instrumentation to monitor these sensors, for the United States’ company NanoSonic, which has begun to market the product.

The optic fibre sensors are human hair-sized devices. The Public University of Navarre has developed a humidity sensor and a light source for applications with optic fibre sensors. Moreover, the Navarre team has designed and manufactured optic-electronic converters that incorporate a signal terminal for the sensor and which, in turn, can be connected to other electronic apparatus, such as a computer, and through which information gathered by the sensors can be consulted.

The collaboration between the Navarre university researchers and the North American company will continue as a result of the new contract for the design and development of electronic instrumentation for nanosensors, signed by both parties, and which will terminate in June of this year.



Dosage of medicines

Nanostructured materials are materials that are synthesised and ordered in their manufacture at a molecular level, and that are deposited with the precision of a few nanometers.

This technique involves the successive deposition of anionic and cationic materials, i.e., materials negatively and positively charged respectively and which can be organised in such a way that the coatings have a thickness in the order of nanometers. The technique is very versatile when combining materials and can provide a highly useful tool to synthesise materials sensitive to different biomedical variables.

A number of research projects on nanostructured materials are currently under way. One of the applications, for example, consists of the dosage of medicines in those cases where the medication is not to be absorbed immediately, but when a certain level is reached in the intestine. For this to happen, the capsule has to be permeable to the medicine only when that level inside the intestine has been reached, given that this is where its efficacy is at its optimum.

To this end, microcapsules have been created composed of a microscopic sphere inside which is the medicine to be dosed. This sphere covering the medicine, and depending on the conditions, opens and closes via a system of micro-pores. In this way the material can be programmed so that, when a certain level of intestinal acidity is reached, the pores open and release the medicine.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=384&hizk=I
http://www.unavarra.es

More articles from Power and Electrical Engineering:

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht New test procedure for developing quick-charging lithium-ion batteries
07.12.2017 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>