Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructured sensors for the United States’ company NanoSonic

14.01.2004


A research team from the Department of Electric and Electronic Engineering at the Public University of Navarre has designed nanostructured optical sensors and instrumentation to monitor these sensors, for the United States’ company NanoSonic, which has begun to market the product.

The optic fibre sensors are human hair-sized devices. The Public University of Navarre has developed a humidity sensor and a light source for applications with optic fibre sensors. Moreover, the Navarre team has designed and manufactured optic-electronic converters that incorporate a signal terminal for the sensor and which, in turn, can be connected to other electronic apparatus, such as a computer, and through which information gathered by the sensors can be consulted.

The collaboration between the Navarre university researchers and the North American company will continue as a result of the new contract for the design and development of electronic instrumentation for nanosensors, signed by both parties, and which will terminate in June of this year.



Dosage of medicines

Nanostructured materials are materials that are synthesised and ordered in their manufacture at a molecular level, and that are deposited with the precision of a few nanometers.

This technique involves the successive deposition of anionic and cationic materials, i.e., materials negatively and positively charged respectively and which can be organised in such a way that the coatings have a thickness in the order of nanometers. The technique is very versatile when combining materials and can provide a highly useful tool to synthesise materials sensitive to different biomedical variables.

A number of research projects on nanostructured materials are currently under way. One of the applications, for example, consists of the dosage of medicines in those cases where the medication is not to be absorbed immediately, but when a certain level is reached in the intestine. For this to happen, the capsule has to be permeable to the medicine only when that level inside the intestine has been reached, given that this is where its efficacy is at its optimum.

To this end, microcapsules have been created composed of a microscopic sphere inside which is the medicine to be dosed. This sphere covering the medicine, and depending on the conditions, opens and closes via a system of micro-pores. In this way the material can be programmed so that, when a certain level of intestinal acidity is reached, the pores open and release the medicine.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=384&hizk=I
http://www.unavarra.es

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>