Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanostructured sensors for the United States’ company NanoSonic

14.01.2004


A research team from the Department of Electric and Electronic Engineering at the Public University of Navarre has designed nanostructured optical sensors and instrumentation to monitor these sensors, for the United States’ company NanoSonic, which has begun to market the product.

The optic fibre sensors are human hair-sized devices. The Public University of Navarre has developed a humidity sensor and a light source for applications with optic fibre sensors. Moreover, the Navarre team has designed and manufactured optic-electronic converters that incorporate a signal terminal for the sensor and which, in turn, can be connected to other electronic apparatus, such as a computer, and through which information gathered by the sensors can be consulted.

The collaboration between the Navarre university researchers and the North American company will continue as a result of the new contract for the design and development of electronic instrumentation for nanosensors, signed by both parties, and which will terminate in June of this year.



Dosage of medicines

Nanostructured materials are materials that are synthesised and ordered in their manufacture at a molecular level, and that are deposited with the precision of a few nanometers.

This technique involves the successive deposition of anionic and cationic materials, i.e., materials negatively and positively charged respectively and which can be organised in such a way that the coatings have a thickness in the order of nanometers. The technique is very versatile when combining materials and can provide a highly useful tool to synthesise materials sensitive to different biomedical variables.

A number of research projects on nanostructured materials are currently under way. One of the applications, for example, consists of the dosage of medicines in those cases where the medication is not to be absorbed immediately, but when a certain level is reached in the intestine. For this to happen, the capsule has to be permeable to the medicine only when that level inside the intestine has been reached, given that this is where its efficacy is at its optimum.

To this end, microcapsules have been created composed of a microscopic sphere inside which is the medicine to be dosed. This sphere covering the medicine, and depending on the conditions, opens and closes via a system of micro-pores. In this way the material can be programmed so that, when a certain level of intestinal acidity is reached, the pores open and release the medicine.

Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=384&hizk=I
http://www.unavarra.es

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>