Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists find new way to store hydrogen fuel

07.01.2004


University of Chicago scientists have proposed a new method for storing hydrogen fuel in this week’s online edition of the Proceedings of the National Academy of Sciences.



The lack of practical storage methods has hindered the more widespread use of hydrogen fuels, which are both renewable and environmentally clean. The most popular storage methods-liquid hydrogen and compressed hydrogen-require that the fuel be kept at extremely low temperatures or high pressures. But the University of Chicago’s Wendy Mao and David Mao have formed icy materials made of molecular hydrogen that require less stringent temperature and pressure storage conditions.

"This new class of compounds offers a possible alternative route for technologically useful hydrogen storage," said Russell Hemley, Senior Staff Scientist at the Geophysical Laboratory of the Carnegie Institution of Washington. The findings also could help explain how hydrogen becomes incorporated in growing planetary bodies, he said.


The father-daughter team synthesized compounds made of hydrogen and water, hydrogen and methane, and hydrogen and octane in a diamond-anvil cell, which researchers often use to simulate the high pressures found far beneath Earth’s surface.

The hydrogen-water experiments produced the best results. "The hydrogen-water system has already yielded three compounds so far, with more likely to be found," said Wendy Mao, a graduate student in Geophysical Sciences at the University of Chicago.

The compound that holds the most promise for hydrogen storage, called a hydrogen clathrate hydrate, was synthesized at pressures between 20,000 and 30,000 atmospheres and temperatures of minus 207 degrees Fahrenheit. More importantly, the compound remains stable at atmospheric pressure and a temperature of minus 320 degrees Fahrenheit, the temperature at which liquid nitrogen boils.

"We thought that would be economically very feasible. Liquid nitrogen is easy and cheap to make," Wendy Mao said.

The hydrogen in a clathrate can be released when heated to 207 degrees Fahrenheit. The clathrate’s environmentally friendly byproduct: water.

David Mao noted that while petroleum-based fuels will eventually run out, the supply of hydrogen is limitless. "Hydrogen is the most abundant element in the universe," said David Mao, a Visiting Scientist in Geophysical Sciences at the University of Chicago. If the new method of storing hydrogen fuel works as expected, "that’s going to change everyone’s life in a big way," he said.

The Maos have applied for a patent on their hydrogen clathrate synthesis technique, but one problem still remains: how to make the clathrates in quantities sufficient to power a car. "We’ve only made them in very small amounts in diamond-anvil cells," Wendy Mao said. The Carnegie Institution’s Hemley noted that the clathrates can be produced in gas pressure devices as well as diamond-anvil cells.

In the realm of planetary science, the study helps explain how some of Jupiter’s moons could have incorporated hydrogen during their formation. Scientists once thought that the moons were incapable of retaining hydrogen during their formation. Now it appears that Callisto, Ganymede and especially Europa contain large quantities of water ice, which would require the presence of hydrogen. The hydrogen clathrates that the Maos synthesized in the laboratory could have formed naturally under the temperature and pressure conditions expected to prevail inside these Jovian moons, Wendy Mao said.

Steve Koppes | EurekAlert!
Further information:
http://www-news.uchicago.edu/

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>