Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wind energy not limited by technical barriers

22.12.2003


Dutch research has demonstrated that there are no technical barriers to wind energy generating a significant part of the electricity supply. With the appropriate technical measures, possible problems in the electricity grid can be taken care of properly.



Researcher Han Slootweg developed simulation models, which demonstrate how wind energy affects the behaviour of electricity grids in concrete situations. These simulation models can also be used to establish the precise nature and size of any technical measures that might be required.

An initial analysis with the model revealed that there are no technical barriers to wind energy generating a significant part of the electricity supply. Technical measures are available to resolve any unexpected problems that arise. Research has shown that the measures chosen are strongly dependent on the type of wind turbine used and this must therefore be taken into account.


Slootweg first of all developed simulation models for different types of wind turbines. Then he developed models for complete wind parks, in which an entire wind park can be simulated at once. The input for the model consists of data from the type of wind turbine used in the park, the location of the individual turbines within the park and the wind speed.

These simulation models were used by Slootweg to investigate the effect of wind turbines on the behaviour of an electricity grid. To this end, he continually substituted some conventional generators with wind turbines, and then compared how different electricity networks responded to a number of events. For example, he investigated how the electricity grid responded to short circuits and changes in the amount of electricity generated due to generator failure.

The research has provided important insights into the consequences of connecting wind turbines to the electricity grid for the grid’s stability. The behaviour of the electricity grid is to a large extent, determined by the power stations connected to it. Wind turbines differ from conventional power stations, which run on coal, natural gas or nuclear fission, in two fundamental aspects. Wind is the primary energy source of wind turbines and the wind cannot be controlled. Wind turbines also contain different types of generators. As a result of this, wind turbines have a very different effect on the electricity grid from that of conventional power stations.

Han Slootweg’s doctoral research was carried out within the framework of the Energy Research incentive programme. This programme is a joint venture between the Netherlands Agency for Energy and the Environment (Dutch acronym: Novem) and the Social Sciences Research Council of NWO.

Sonja Jacobs | NWO
Further information:
http://www.nwo.nl

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>