Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To see the message, just add noise

17.12.2003


USC nanotube device uses ’Stochastic Resonance’ to enhance subthreshold signals


Stochastic resonant image of nanotube, with progressively more noise added



Paradoxical as it seems, a team of University of Southern California researchers has built a signal detector that only works when noise is added.

The device uses a novel kind of transistor made from carbon nanotubes. The principal investigator, Professor Bart Kosko of the USC department of electrical engineering, claims that the series of experiments reported in the December issue of the American Chemical Society’s Nano Letters, says the result is significant both in the development of electronic applications for nanotubes, and in the development of applications for "stochastic resonance," the counterintuitive use of noise to amplify signals.


The basic idea of stochastic resonance detection, says Kosko, is to create devices with strict threshold effects, that only respond to signals of more than a certain amplitude -- and then set this threshold around, or even below the amplitude
of the signal expected.

In the sub threshold form, "In a quiet, noise-free environment," said the scientist, "the detectors will not receive a signal." But if a moderate amount of noise is present, the signal will, as it were, float on top of the noise, triggering the detectors."

Kosko, who earlier published a theorem setting forth the mathematical basis for the phenomenon, says that the experiments made with the novel carbon nanotube detectors reported in the new paper confirm his predictions.

Carbon nanotubes are minute pipes made of graphite, the form of carbon familiar in pencil lead. Carbon atoms in graphite naturally organize themselves into two-dimensional sheets or lattices in a chicken wire or beehive like hexagonal lattice. Modern fabrication techniques can roll up such sheets into ultra thin tubes 100,000 times smaller than a human hair -- less than 2 nanometers in diameter.

Twisting such tubes can drastically change their electronic properties, from conductors, to semiconductors. A main focus of interest now is their use in flat panel displays.

The experiment used semiconductor nanotubes two nanometers in diameter and 3,000-5000 nanometers long created by Chongwu Zhou, also of the department of electrical engineering, configured to perform as a simple transistor set to detect an electronic signal.

The signal to be detected, however, was deliberately set well below this critical minimum, so that, in silent conditions, no signal at all was received.

But when the experimenters added noise -- random electrical activity -- generated by several alternate methods, the signal came through. Too much added noise wiped it out. But at moderate levels previously undetectable signals would come through.

Kosko has earlier created illustrations of the principle. " Each pixel acts as a separate threshold unit or neuron (or nanotube transistor)," he said.

"We start off by throwing away a great deal of the image’s structure and then add noise from there."

The noise makes the fragmentary picture suddenly recognizable. (See illustration).

Kosko has been studying stochastic resonant effects -- how noise can in some circumstances bring out otherwise hidden patterns -- for years, building on work done for the most part in biology. Researchers have discovered that, for example, random Brownian movement stimulation of the cochlear sensors frog ears increases their sensitivity.

Kosko believes that increased awareness of the stochastic resonance phenomenon can aid designers of communications, including especially modern spread-spectrum devices, which often rely on an array of faint signals.

"Nano-device designers can individually tailors nanotubes to specific signals and then deploy them in numbers -- rather like pipe organs tuned to different notes -- to take advantage of the SR-effects, " he said.


###
In addition to Zhou, the paper was also co-authored by USC graduate students Ian Y. Lee and Anile Liu. The National Science Foundation provided funding for the research

Bob Calverley | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Power and Electrical Engineering:

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>