Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists decode DNA of bacterium that cleans up uranium contamination and generates electricity

12.12.2003


Department of Energy-funded researchers have decoded and analyzed the genome of a bacterium with the potential to bioremediate radioactive metals and generate electricity. In an article published in the December 12th issue of Science, researchers at The Institute for Genomic Research (TIGR) and the University of Massachusetts, Amherst, report that Geobacter sulfurreducens possesses extraordinary capabilities to transport electrons and "reduce" metal ions as part of its energy-generating metabolism.



"The genome of this tiny microorganism may help us to address some of our most difficult cleanup problems and to generate power through biologically-based energy sources," Secretary of Energy Spencer Abraham said. "Geobacter is an important part of Nature’s toolbox for meeting environmental and energy challenges. This genome sequence and the additional research that it makes possible may lead to new strategies and biotechnologies for cleaning up groundwater at DOE and at industry sites."

The contamination of groundwater with radionuclides and metals is one of the most challenging environmental problems at Department of Energy former nuclear weapons production sites. Researchers at the University of Massachusetts have previously found that Geobacter species can precipitate a wide range of radionuclides and metals (including uranium, technetium and chromium) from groundwater, preventing them from migrating to wells or rivers where they may pose a risk to humans and the environment.


The analysis of the genome sequence revealed a number of capacities that had not been previously suspected from past research on this microbe. "We’ve provided a comprehensive picture that has led to fundamental changes in how scientists evaluate this microbe," said Barbara Methe, the TIGR researcher who led the genome project and is the first author of the Science paper. "Research based on genome data has shown that this microbe can sense and move towards metallic substances, and in some cases can survive in environments with oxygen." G. sulfurreducens was previously thought to be an anaerobic organism.

The other main project collaborator was Derek Lovley, a professor of microbiology at the University of Massachusetts, Amherst, who discovered the Geobacter family of bacteria and has led projects to assess their biology and their potential for bioremediation. Lovley said, "Sequencing the genome of Geobacter sulfurreducens has radically changed our concepts of how this organism functions in subsurface environments." The genome analysis, he said, "revealed previously unsuspected physiological properties" of the bacterium and also gave scientists insight into the metabolic mechanisms that the organism uses to harvest energy from the environment.

Geobacter reduces metal ions in a chemical process during which electrons are added to the ions. As a result, the metals become less soluble in water and precipitate into solids, which are more easily removed. Small charges of electricity are also created through the reduction process. Geobacter is also of interest to the Department of Energy because of its potential to create an electrical current in a "bio-battery."

Geobacter microbes are widely distributed in nature and are commonly found in subsurface environments contaminated with radionuclides and metals. Researchers have demonstrated that if they "feed" the microbes simple carbon sources such as acetate they will grow faster and precipitate more radionuclides and metals. These findings are now serving as the basis for a test of a bioremediation strategy aimed at removing uranium from groundwater at a Uranium Mill Tailings Remedial Action site near Rifle, Colorado.

The Natural and Accelerated Bioremediation Research (NABIR) and Microbial Genome Programs in the department’s Office of Science funded the $800,000 G. sulfurreducens sequencing project. The genome sequence is now serving as the basis for detailed investigations, supported by the department’s Genomes to Life program, into the ability of Geobacter to reduce radionuclides and metals and to generate electricity. The NABIR program’s mission is to provide the fundamental science that will serve as the basis for development of cost-effective bioremediation and long-term stewardship of radionuclides and metals in the subsurface at DOE sites. The focus of the program is on strategies leading to long-term immobilization of contaminants in place to reduce the risk to humans and the environment. The NABIR program encompasses both intrinsic bioremediation by naturally occurring microbial communities, as well as accelerated bioremediation through the use of biostimulation -- addition of inorganic or organic nutrients. More information on NABIR is available at www.lbl.gov/NABIR and on the Microbial Genome Program at http://doegenomes.org.


DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the nation, manages 10 world-class national laboratories and builds and operates some of the nation’s most advanced R&D user facilities. Its web site address is www.science.doe.gov.

More detailed information on the Science article is available in news releases issued by TIGR and the University of Massachusetts. To obtain those releases, visit www.eurekalert.org or contact those institutions’ press offices.

Robert Koenig (TIGR), 301-838-5880
Daniel Fitzgibbons (UMass), 413-545-0444

Jeff Sherwood | EurekAlert!
Further information:
http://www.science.doe.gov

More articles from Power and Electrical Engineering:

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

nachricht Large-scale battery storage system in field trial
11.12.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Using drones to estimate crop damage by wild boars

12.12.2017 | Ecology, The Environment and Conservation

How fires are changing the tundra’s face

12.12.2017 | Ecology, The Environment and Conservation

Telescopes team up to study giant galaxy

12.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>