Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gas Hydrates – Will they be considered in the future global energy mix?

11.12.2003


For the first time, an international research program involving the Department of the Interior’s U.S. Geological Survey has proven that it is technically feasible to produce gas from gas hydrates. Gas hydrates are a naturally occurring "ice-like" combination of natural gas and water that have the potential to be a significant new source of energy from the world’s oceans and polar regions.



Today at a symposium in Japan, the successful results of the first modern, fully integrated production testing of gas hydrates are being discussed by an international gathering of research scientists. The international consortium, including the USGS, the Department of Energy, Canada, Japan, India, Germany, and the energy industry conducted test drilling at a site known as Mallik, in the Mackenzie Delta of the Canadian Arctic. This location was chosen because it has one of the highest concentrations of known gas hydrates in the world.

The United States is committed to participating in international research programs such as this one to advance the understanding of natural gas hydrates and the development of these resources. Even though gas hydrates are known to occur in numerous marine and Arctic settings, little was known before the Mallik project about the technology necessary to produce gas hydrates.


The successful results from this research form the world’s most detailed scientific information about the occurrence and production characteristics of gas hydrates.

The estimated amount of natural gas in the gas hydrate accumulations of the world greatly exceeds the volume of all known conventional gas resources. While gas hydrates hold great potential as an "environmentally-friendly" fuel for the 21st Century, the technical challenges of realizing them as a resource are substantial. Additional research is required to understand and develop new techniques to quantify their distribution in nature.

Depressurization and thermal heating experiments at the Mallik site were extremely successful. The results demonstrated that gas can be produced from gas hydrates with different concentrations and characteristics, exclusively through pressure stimulation. The data supports the interpretation that the gas hydrates are much more permeable and conducive to flow from pressure stimulation than previously thought. In one test, the gas production rates were substantially enhanced by artificially fracturing the reservoir.

The USGS serves the nation by providing reliable scientific information to describe and understand the Earth; minimize loss of life and property from natural disasters; manage water, biological, energy, and mineral resources; and enhance and protect our quality of life.

A. B. Wade | EurekAlert!
Further information:
http://www.usgs.gov/

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>