Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research generates reliable energy source during outages

10.12.2003


As utility companies search for ways to avoid blackouts, like the one that shut down the northeastern corner of the United States last summer, one idea comes from the University of Wisconsin-Madison.



Researchers from the College of Engineering have designed a system where a small network of local generators can reliably disconnect from the rest of the power supply, enabling locations where electricity is critical to stay in operation.

Most buildings receive their electrical power from transmission lines branching off a main power grid. With energy coming from a large network -- the one responsible for the August 2003 blackout stretched 157,000 miles -- any disruption could cause a cascade of powerlessness in cities near and far.


Because the new technology developed at UW-Madison receives its power locally, it can "leap frog" transmission lines, avoiding any failures within those lines, says lead inventor Robert Lasseter, professor emeritus of electrical and computer engineering.

The UW-Madison technology consists of a microgrid, a small network of several power generators located at a single site. These generators, integrated into the main energy distribution system, encompass a wide range of power sources, including micro-turbines, gas internal combustion engines, fuel cells and photovoltaic, which generates voltage from light exposure.

When problems occur within the transmission lines, the generators and their loads (the devices each one powers) can separate from the main distribution system to isolate particular areas - hospital rooms or factory floor, for example - from the disturbance.

Explains Lasseter: "The critical loads in a microgrid can ride through any event. That means they can stay alive when the grid fails." The ability to "island" generators and electrical loads together, he adds, has the potential to provide higher local power reliability than that provided by the distribution system as a whole.

But providing this reliability requires more than separating the microgrid from the main power system, says Lasseter. Drops in voltage, even from generators in a small network, can lead to fluctuations in power that shut down equipment or recalibrate machinery. These are the types of costly problems that businesses want to avoid during a blackout, Lasseter adds.

To dodge these fluctuations, the Wisconsin engineer and his graduate student, Paolo Piagi, have fit the generators in the migrogrid with voltage source inverters - a power electronic device that allows each generator to regulate voltage, thereby regulating electric current and the energy it produces.

Besides sidestepping possible power outages, the microgrid system is more energy efficient. All generators - whether part of a utility plant or small building - produce more waste heat than electricity.

However, smaller generators, such as those in Lasseter’s microgrid network, can easily be placed in areas that need to be heated, says the Wisconsin engineer. This placement of the generators and the waste heat they produce, he adds, can bump up the amount of usable energy to nearly 90 percent, and can do so without the use of complex heat distribution systems, such as steam and chilled water pipes.

Lasseter and his UW-Madison colleagues are discussing a project to build a working microgrid with the California Department of Energy and the national laboratories of Sandia, Oak Ridge and Lawrence Livermore. The project would simulate the possible use of a microgrid at a small factory.

The microgrid design is patented by the Wisconsin Alumni Research Foundation, a non-profit organization that patents and licenses intellectual property for the university.


Emily Carlson
608-262-9772
emilycarlson@wisc.edu

Emily Carlson | EurekAlert!
Further information:
http://www.wisc.edu/

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>