Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Solving the problems of electric motors run from power converters

09.12.2003


In this PhD thesis, Eugenio Gubía proposed a solution for the problems of electric motors run from power converters. Controlling motors and electric generators by means of power converters has negative effects with the presence of overtvoltages and high-frequency currents throughout the installation. These effects accelerate the ageing process of the motors and, moreover, can provoke faults in the correct operating of the control circuits.



Thus, in his PhD, Mr Gubia has developed a generic method that can be adapted to each one of the possible installations with the view to identifying the origin of the high-frequency problems and, moreover, to analyse possible solutions. Likewise, the proposed method can be adapted to the design stage of a new installation.
In order to design this method, it was necessary to set up simulation models to reproduce the behaviour of motors, transformers, cables and the power converter, using frequencies in the order of 10 megaHertz. These frequencies are much higher then the tens of kiloHertz used in classical models.

Concretely, in this work it has been possible to reproduce the overvoltages produced as a result of using long connection cables between the inverter and the motor given that, the longer the cable, the greater the probability of overvoltage. This type of cable can be found, for example, in wind-powered generators, which incorporate the generator (the motor) in the upper part of the structure and the power converter at the base.



Also in this thesis, the problem of earthing currents in the installation and the supply grid was investigated, a problem known as electromagnetic interferences or conducted EMI. These have become highly important of late as they can provoke a fault in other units connected to the same earthing system. In fact, the regulations which limit the amount of such currents are increasingly stricter.

Eugenio Gubía has put forward that solutions to both problems, overvoltages and interferences, require the use of filters, the study of which, in this work, has been approached from a perspective of wave theory in transmission lines.
If the electromagnetic interferences do not have a technique or device for their quantification at the heart of the operation, neither can the efficacy of the filters applied to eliminate said effects be measured.

To this end, the work developed in this PhD offers a precise methodology for the analysis of both overvoltages and electromagnetic interferences and that, moreover, enables an efficient filter design.

The author of the thesis is currently researching the possibility of applying this methodology to other fields of power electronics.


Contact :
Iñaki Casado Redin
Nafarroako Unibertsitate Publikoa
inaki.casado@unavarra.es
(+34) 948 16 97 82

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=370&hizk=I
http://www.unavarra.es

More articles from Power and Electrical Engineering:

nachricht Cooling buildings with solar heat
26.09.2016 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

nachricht Philippines’ microsatellite captures best-in-class high-resolution images
22.09.2016 | Hokkaido University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>