Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

DNA used to create self-assembling nano transistor

21.11.2003


Breakthrough proves possible to use biology to create electronics



Scientists at the Technion–Israel Institute of Technology have harnessed the power of DNA to create a self-assembling nanoscale transistor, the building block of electronics. The research, published in the Nov. 21, 2003 issue of Science, is a crucial step in the development of nanoscale devices.

Erez Braun, lead scientist on the project and associate professor in the Faculty Physics at the Technion, says science has been intrigued with the idea of using biology to build electronic transistors that assemble without human manipulation. However, until now, demonstrating it in the lab has remained elusive. "This paper shows you can start with DNA proteins and molecular biology and construct an electronic device," he said.


"Erez Braun and his colleague Uri Sivan are some of the few pioneers in this field," said Horst Stormer, professor in Columbia University’s Departments of Physics and Applied Physics and scientific director of the Nano Science and Engineering Centers. "This is outstanding research in the area that matters most in nano technology: self-assembly."

To get the transistors to self assemble, the Technion research team attached a carbon nanotube -- known for its extraordinary electronic properties -- onto a specific site on a DNA strand, and then made metal nanowires out of DNA molecules at each end of the nanotube. The device is a transistor that can be switched on and off by applying voltage to it.

The carbon nanotubes used in the experiment are only one nanometer, or a billionth of a meter, across. In computing technology, as scientists reach the limits of working with silicon, carbon nanotubes are widely recognized as the next step in squeezing an increasing number of transistors onto a chip, vastly increasing computer speed and memory. Braun emphasized that computers are only one application; these transistors may, for example, enable the creation of any number of devices in future applications, such as tiny sensors to perform diagnostic tests in healthcare.

Though transistors made from carbon nanotubes have already been built, those required labor-intensive fabrication. The goal is to have these nanocircuits self-assemble, enabling large-scale manufacturing of nanoscale electronics.

DNA, according to Braun, is a natural place to look for a tool to create these circuits. "But while DNA by itself is a very good self-assembling building block, it doesn’t conduct electrical current," he noted.

To overcome these challenges, the researchers manipulated strands of DNA to add bacteria protein to a segment of the DNA. They then added certain protein molecules to the test tube, along with protein-coated carbon nanotubes. These proteins naturally bond together, causing the carbon nanotube to bind to the DNA strand at the bacteria protein.

Finally, they created tiny metal nanowires by coating DNA molecules with gold. In this step, the bacteria protein served another purpose: it prevented the metal from coating the bacteria-coated DNA segment, creating extending gold nanowires only at the ends of the DNA strand.

The goal, Braun explained, was to create a circuit. However, "at this point, the carbon nanotube is located on a segment of DNA, with metal nanowires at either end. Theoretically, one challenge here would be to encourage the nanotube to line up parallel to the DNA strand, meet the nanowires at either end, and thus make a circuit.

"There are some points where nature smiles upon you, and this was one of those points," Braun continued. "Carbon nanotubes are naturally rigid structures, and the protein coating makes the DNA strand rigid as well. The two rigid rods will align parallel to each other, thus making an ideal DNA-nanotube construct."

"In a nutshell, what this does is create a self-assembling carbon nanotube circuit," he concluded.

Scientists controlled the creation of transistors by regulating voltage to the substrate. Out of 45 nanoscale devices created in three batches, almost a third emerged as self-assembled transistors.

Braun added, however, that while this research demonstrates the feasibility of harnessing biology as a framework to construct electronics, creating working electronics from self-assembling carbon nanotube transistors is still in the future.

Braun conducted the research with colleagues Kinneret Keren, Rotem S. Berman, Evgeny Buchstab, and Uri Sivan.


To speak with Professor Erez Braun, contact Kevin Hattori at kevin@ats.org or 212-407-6319.
To request papers, contact the AAAS Office of Public Programs at scipak@aaas.org, or call 202-326-6440.

Kevin Hattori | EurekAlert!
Further information:
http://www.technion.ac.il/

More articles from Power and Electrical Engineering:

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

nachricht System draws power from daily temperature swings
16.02.2018 | Massachusetts Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>