Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Photochemistry research could lead to cleaner environment, new sensors

21.11.2003


Alistair Lees spends much of his research time hoping to see the light.




Using tools that improve by several orders of magnitude on the accuracy of microscopes and stopwatches, Lees is working at the molecular level to explore the effect of light on chemical systems. The field is called photochemistry and Lees’ efforts could help to find less-expensive ways to produce gasoline, make the environment cleaner and safer, and enhance the quality of microcircuitry and the equipment that relies on it.

While most chemists work with molecules in their ground or normal states, Lees has spent the past two decades working with "excited" molecules, a state attained when molecules absorb light, known as second chemistry.


The reactions that occur during these excited states are incredibly fast - typically about one tenth of one quadrillionth of a second. To be studied, they must be slowed or in some other way inhibited and Lees has developed a unique approach.

Excited state molecules generally emit light, give off heat or break into fragments as they return to the ground state. Relying on this, many chemists - like forensic experts who determine the nature of an explosion by studying resulting debris - use a technique called matrix isolation to study the fragments produced immediately after a molecule emits light.

Lees has instead synthesized entire new molecules, which do not fragment in their excited states. When cooled, his creations remain intact and display luminescence, giving him an unprecedented chance to study the second chemistry involved - an approach, which has opened the door to the development of several promising applications.

Working with $1.2 million in grants from the U.S. Department of Energy and the American Chemical Society, Lees is studying hydrocarbon activation, particularly how some new rhodium and iridium chemical compounds act as catalysts to break apart the bonds of methane.

The reaction suggests the possibility that the small methane molecule could be built up to the size of the larger oil molecule. Methane, or natural gas, usually does not react with other compounds, but because it is both abundant and recyclable, it is an attractive alternative to oil.

Lees’ preliminary research indicates it might someday be able to replace oil in the production of many fuels, as well as a host of other products, including plastics and pharmaceuticals.

Lees’ research is also likely to help manufacturers of a wide range of products. Supported by a grant from IBM, Lees is incorporating some of his light-emitting molecules into adhesive polymers. As the adhesive sets, its luminescence changes from red to orange to yellow, signaling appropriate curing and an optimal bond.

The microelectronics industry is interested in this research. If adhesives aren’t completely set during the assembly process, machines fail, parts break and production costs soar. The aerospace and automobile industries are also interested, Lees said. "Clearly, it’s important, when you’re riding in a car or a plane that it not fall apart," he said Photoinitiators is another application of Lees’ work. "We found that some of our organometallic compounds actually initiate polymerizations reactions when exposed to light," he said. Lees is collaborating with General Electric and IBM to research how this technique could be used to enhance microcircuitry production.

Another application of Lees’ work is likely to stem from the arena known as supramolecular chemistry. Lees is finding ways to insert luminescent compounds into the cavities of some large molecules. Because the luminescence of such molecules changes substantially in reaction to their environment, they make excellent sensors.

Recently, Lees and his team found a compound that is a good sensor for cyanide. Others, he said, are sensitive to hydrocarbon vapors, which may help detect pollutants, another important application in today’s industrial world.


Susan E. Barker | Binghamton University
Further information:
http://research.binghamton.edu/discovere/november2003/TopStories/Lees.htm

More articles from Power and Electrical Engineering:

nachricht New tech for commercial Lithium-ion batteries finds they can be charged 5 times fast
20.02.2018 | University of Warwick

nachricht In best circles: First integrated circuit from self-assembled polymer
19.02.2018 | Max-Planck-Institut für Polymerforschung

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>