Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The FATRONIK-designed micro-wind generator is up and running

18.11.2003


FATRONIK technological centre has designed and installed a micro-wind generator at the Aubixa Euskal Girotze boarding centre (San Pedro neighbourhood, Elgoibar). Since the end of October the 2.5 kW micro-wind generator has been producing energy which is initially planned to power the boarding centre’s four refrigerators, the control room, the data-reception sensors and the PCs. Moreover, four 120 kW photovoltaic plates have been incorporated into the micro-wind generator, thus generating a hybrid system which takes maximum advantage of renewable resources such as the sun and the wind.




The triple-bladed wind generator rotor was designed by the Australian company Bolwell Corporation. Each vane is 2.1m long with an aerodynamic profile chosen for working with low Reynolds values – they have a variable angle of torsion running from the base to the tip. In this way, the angle of attack of the wind with respect to the vane is kept constant all along its length. The rotor is directly coupled to a multipolar electric generator consisting of permanent magnets (PMG) with no intermediate multiplier. The current generated is alternating and with variable voltage and frequency. This current goes to a number of batteries after passing through a voltage regulator which converts the alternating current to direct and eliminates the surplus voltage. Finally, the current is converted into one at 220V with a current inverter, thus adapting the voltage for customary usage.

The wind generator starts to rotate at wind speeds of 3.5m/s and reaches maximum power at 9.5m/s. If the wind exceeds a velocity of 16m/s the passive power control system (side furling) of the wind generator comes automatically into operation: this control system is achieved through an articulated assembly between passive power regulation system and the body of the wind generator which is situated eccentrically to the axis of the wind generator’s truss tower. Thanks to this braking mechanism for the rotor, both the electric surge infrastructure and the mechanical components are protected against excessive centrifugal forces.


This hybrid system is designed to work autonomously, i.e. outside the electric grid system. So, this kind of application is of great use in communities distant from cities or towns such as rural areas or zones under development. These systems can be used as a substitute for the grid in areas where the latter system is prohibitively expensive and, moreover, they promote awareness regarding natural resources.

If they are compared to high-powered wind generators, the main difference is in the simple: easy installation and maintenance, minimum aesthetic impact and totally integrable into the environment. Regarding its current use, the main manufacturers and most users of this technology are found in the United States, but things are beginning to move in the Spanish State and in the rest of Europe.

Notes

The micro-wind generator has been developed by I. Urrutikoetxea, J.R. Zugadi and I.L. Carrascosa from the team of Renewable Energies.

Contact :
Iker Lain Carrascosa
Fatronik
ilcarrascosa@fatronik.com
(+34) 943 74 80 20

Garazi Andonegi | Basque research
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Gelaxka=1_1&Berri_Kod=359&hizk=I
http://www.fatronik.com

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>