Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microbial Fuel Cells: Optimization Of The Anode Compartment For Improved Electron Transfer

14.11.2003


A microbial fuel cell mimics a biological system, in which bacteria do not directly transfer the energy-rich electrons gained out of the feeding to their characteristic electron acceptor. Instead, the electrons are diverted towards an electrode (anode) and subsequently conducted over a resistance or power user, and a cathode (see figure). At the cathode, these electrons are used to reduce oxygen with the formation of water. This way, bacterial energy is directly converted to electrical energy.

Microbial fuel cells have so far known limited success because of the low output observed. The maximum attainable potential over a biofuel cell, based on the potential difference between the redox couple, is 1.15V. However, the real fuel cell potential is mostly lower due to the potential losses observed at both the anode and the cathode, and the internal resistance of the fuel cell. Lowering these losses at the anode can be obtained chemically through enlargement of the specific electrode surface or the use of redox mediators, and biologically by the selection of adapted bacteria.

The internal resistance is mainly caused by the resistance of the electrolytes and of the proton exchange membrane (PEM), and can be lowered by increasing the reactor turbulence and the electrolyte/PEM conductivity.



The Laboratory for Microbial Ecology and Technology (LabMET) and the Laboratory for Non-Ferrous Metallurgy cooperate to obtain chemical and biological anode optimization.

The biological optimisation has been performed through selection of suitable microbial consortia. Electrochemical active bacteria were selected from a bacterial culture originating from anaerobic sludge by repetitive bacterial transfer into new fuel cells. The culture was able to transfer electrons efficiently to the graphite electrodes, and could supply a considerably higher output than previously reported, up to 4,31W/m2 of electrode surface (664 mV, 30.9 mA). A series of tests was performed to elucidate the behaviour of the biofuel cell in relation to several glucose loading rates, clarifying operational parameters. Molecular analysis was performed to determine the nature of the bacteria present in the biofuel cell. The identified bacteria were mainly facultative anaerobic, capable of hydrogen production. Cyclic voltammetry showed an evolution towards an electrochemically more active mixed bacterial culture during the experimental period.

Chemical optimization is the next step in the research. The effect of chemical redox mediators, inserted into the electrode matrix, onto the electron transfer can be of significant importance to further boost up the biofuel cell output. Preliminary tests have indicated the viability of this approach.

The results obtained at LabMET open perspectives towards future applications. The first application will very likely involve the use of microbial fuel cells to generate electricity out of plant juices, obtained on site. This way, a forest can become a bio-power plant. Long term research will focus on low power mobile applications. Hence, the question at the restaurant might one day be: "Waiter, one sugar cube for my coffee, and one for my mobile phone..."

Korneel RABAEY | alfa

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>