Dutch research has revealed that energy subsidies can delay the dissemination of new energy-saving technologies. Furthermore, companies do not always want to get rid of the old technology straightaway and therefore new ideas are confined to the top shelf for longer.
Ph.D. student Peter Mulder demonstrated that subsidies for investments in energy-saving can have an adverse affect in the longer term. These subsidies can be counter-effective, since they only stimulate investment in existing technology. Consequently, companies are less inclined to wait for the arrival of a new and better technology.
In most cases companies do not use the latest, most energy efficient and cost-effective machines. This seems to contradict economic principles which state that companies aim to realise as many cost savings as possible. Peter Mulder discovered that new technologies spread slowly because companies have a number of reasons for postponing investments in the latest technologies.
Lydie van der Meer | NWO
Further information:
http://www.nwo.nl
Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE
Silicon as a new storage material for the batteries of the future
25.04.2018 | Christian-Albrechts-Universität zu Kiel
At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.
Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...
Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.
Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...
University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.
Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.
Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...
Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.
The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...
Anzeige
Anzeige
Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"
13.04.2018 | Event News
Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018
12.04.2018 | Event News
IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur
09.04.2018 | Event News
Industrial Maturity of Electrically Conductive Adhesives for Silicon Solar Cells Demonstrated
25.04.2018 | Power and Electrical Engineering
Electrode shape improves neurostimulation for small targets
25.04.2018 | Medical Engineering
Silicon as a new storage material for the batteries of the future
25.04.2018 | Power and Electrical Engineering