Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Illinois researchers create world’s fastest transistor -- again

10.11.2003


Researchers at the University of Illinois at Urbana-Champaign have broken their own record for the world’s fastest transistor. Their latest device, with a frequency of 509 gigahertz, is 57 gigahertz faster than their previous record holder and could find use in applications such as high-speed communications products, consumer electronics and electronic combat systems.




"The steady rise in the speed of bipolar transistors has relied largely on the vertical scaling of the epitaxial layer structure to reduce the carrier transit time," said Milton Feng, the Holonyak Professor of Electrical and Computer Engineering at Illinois, whose team has been working on high-speed compound semiconductor transistors since 1995. "However, this comes at the cost of increasing the base-collector capacitance. To compensate for this unwanted effect, we have employed lateral scaling of both the emitter and the collector."

Feng and graduate students Walid Hafez and Jie-Wei Lai fabricated the high-speed devices in the university’s Micro and Nanotechnology Laboratory. Unlike traditional transistors, which are built from silicon and germanium, the Illinois transistors are made from indium phosphide and indium gallium arsenide.


"This material system is inherently faster than silicon germanium, and can support a much higher current density," Feng said. "By making the components smaller, the transistor can charge and discharge more quickly, creating a significant improvement in speed."

During the past year, high-speed transistor records have fallen like dominoes on the Illinois campus. In January, Feng’s group announced a transistor with a 150-nanometer collector and a top frequency of 382 gigahertz. In May, the group reported a 452-gigahertz device with a 25-nanometer base and a 100-nanometer collector. Further scaling reduced the collector size to 75 nanometers, resulting in a 509-gigahertz device, announced last month.

In addition to using a high-speed material system and smaller device components, another technique the researchers employed to boost transistor speed utilized a narrow metal bridge to separate the base terminal from the device connector post.

"Normally in transistors the contact size is bigger than the transistor itself," Feng said. "Our micro-bridge eliminates the parasitic base to collector capacitance that is inherent with designs that use large base contact posts. By isolating the base, we can achieve higher current density and faster device operation."

Faster transistors would enable the creation of faster computers and video games, more flexible and secure wireless communications systems, and more rapid analog-to-digital conversion for use in radar and other electronic combat systems.

"Further vertical scaling of the epitaxial structure, combined with lateral device scaling, should allow devices with even higher frequencies," Feng said. "Our ultimate goal is to make a terahertz transistor."

James E. Kloeppel | UIUC
Further information:
http://www.uiuc.edu/
http://www.news.uiuc.edu/scitips/03/1106feng.html

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>